K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Nối OM, ta có:

OA = OM (bán kính đường tròn tâm O)

Nên ΔOAM cân tại O

⇒∠A =∠M1(tính chất tam giác cân)(1)

OM = OB (bán kính đường tròn tâm O)

Suy ra: ΔOBM cân tại O

⇒∠B =∠M2(tính chất tam giác cân) (2)

Trong ΔAMB ta có:

∠A + ∠AMB + ∠B = 180º (tổng ba góc trong tam giác)

⇒∠A +∠B +∠M1+∠M2 =180 (3)

Từ (1), (2) và (3) suy ra: 2(∠M1 + ∠M2)=180o

Vậy: ∠M1+∠M2=90o hay ∠(AMB) =90o

22 tháng 1 2017

ddddddddddddddddddddd

22 tháng 1 2017

sorry thằng em nó lam nhé 

10 tháng 6 2017

undefined

(h.141)\(\Delta AOM\) cân \(\Rightarrow\)\(\widehat{A}=\widehat{M1}\)

\(\Delta BOM\) cân \(\Rightarrow\)\(\widehat{B}=\widehat{M2}\)

Suy ra \(\widehat{M1}+\widehat{M2}=\widehat{A}+\widehat{B}\)do đó

\(\widehat{AMB}=\widehat{A}+\widehat{B}\).Ta lại có:

\(\widehat{AMB}+\widehat{A}+\widehat{B}=180^0\) nên

\(\widehat{AMB}=90^0\)

26 tháng 1 2018

(h.141)ΔAOM=>A^=M1^

ΔBOMΔBOM cân B^=M2^

Suy ra ˆM1+ˆM2=ˆA+ˆBdo đó

ˆAMB=ˆA+ˆB.Ta lại có:

ˆAMB+ˆA+ˆB=180o nên

ˆAMB=90o

undefined

6 tháng 7 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

1 tháng 2 2016

em moi hoc lop 6 thoi chi oi

13 tháng 12 2016

Bổ đề : Chứng minh tam giác nội tiếp đường tròn có 1 cạnh là đường kính đường tròn là tam giác vuông

A B C O 1 2

OA = OB = OC (bán kính của (O)) nên\(\Delta COA\) cân tại O có\(\widehat{A}=\widehat{C_1}\);\(\Delta COB\)cân tại O có\(\widehat{B}=\widehat{C_2}\)

\(\Delta ABC\)\(\widehat{A}+\widehat{ACB}+\widehat{B}=180^0\Leftrightarrow\widehat{C_1}+\widehat{ACB}+\widehat{C_2}=180^0\Leftrightarrow2\widehat{ACB}=180^0\Rightarrow\widehat{ACB}=90^0\left(đpcm\right)\)

A B M N C

Áp dụng cmt,ta có\(\Delta AMB,\Delta BNA\)lần lượt vuông tại M,N có : AM = BN ; AB chung

\(\Rightarrow\Delta AMB=\Delta BNA\left(ch-cgv\right)\Rightarrow\widehat{MBA}=\widehat{NAB}\)(2 góc tương ứng) =>\(\Delta ABC\)cân tại C.

13 tháng 12 2016

A B M N C

Vì AM = BN nên \(\text{sđcung}AM=\text{sđcung}BN\)

mà \(\widehat{ABM}\) và \(\widehat{BAN}\) lần lượt chắn hai cung này nên có số đo bằng nhau.

Từ đó suy ra đpcm.