K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018
Juc vs mn câu b thui
26 tháng 5 2019

Sửa đề chút nhé: H là giao của AK và MN

B A M N H C K O

a) Xét tứ giác BCHK ta có:

\(\widehat{BCH}=90^o\)( MN vuông AB)

\(\widehat{BKH}=90^o\)( góc BKA chắn 1/2 đường tròn)

=> \(\widehat{BCH}+\widehat{BKH}=180^o\)

=> BCHK nội tiếp

b) Ta có: OA vuông MN, và OA cắt MN tại C

=> C là trung điểm MN

=> BC là đường trung tuyến tam giác BMN

Mặt khác OC=1/2 OA, OA=1/2 AB

=> OC=1/3 BC

=> O là trọng tâm tam giác BMN

Mặt khác O là tâm đường tròn ngoại tiếp tam giác BMN

=> Tam giác BMN là tam giác đều

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

2 tháng 4 2019

Mình thấy câu c khó quá

Nếu cậu lm đc giúp mk nha

a: góc AKB=1/2*180=90 độ

góc HCB+góc HKB=180 độ

=>BKHC nội tiếp

b: Xét ΔACH vuông tại C và ΔAKB vuông tại K có

góc CAH chug

=>ΔACH đồng dạng với ΔAKB

=>AC/AK=AH/AB

=>AK*AH=AC*AB=1/2R*2R=R^2

14 tháng 5 2021

   Ta có: góc AKP = 90độ ( Góc nội tiếp chắn nửa đường tròn)

Mà AK giao MN tại H =) Góc HKP = 90độ (1)

  Lại có: MC vuông góc AB =) Góc HCB = 90độ (2)

Từ (1) và (2) =) góc HKP + góc HCP = 180độ

Mà 2 góc đối nhau

=) Tứ giác BCHK nội tiếp

25 tháng 5 2021

a) Do M là điểm chính giữa của cung BC nên \(\widehat{OIC}=90^o\).

Mà \(\widehat{OHC}=90^o\) nên tứ giác HCIO nội tiếp đường tròn đường kính OC.

b) Do M là điểm chính giữa của cung BC nên hai cung MB, MC bằng nhau.

Từ đó \(\widehat{MAC}=\widehat{MAB}\) nên AM là tia phân giác của góc BAC.

Theo tính chất đường phân giác trong tam giác ta có \(\dfrac{KC}{KB}=\dfrac{AC}{AB}=sin30^o=\dfrac{1}{2}\Rightarrow KB=2KC\).

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0