Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
Gọi I là trung điểm của BC
K là giao của OI với DA'
M là giao của EI với CF
N đối xứng D qua I
ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
=>OI//AD
=>OK//AD
ΔADA' có OA=OA'; OK//AD
=>KD=KA'
ΔDNA' có ID=IN và KD=KA'
nên IK//NA'
=>NA' vuông góc BC
góc BEA'=góc BNA'=90 độ
=>BENA' nội tiếp
=>góc EA'B=góc ENB
góc EA'B=góc AA'B=góc ACB
=>góc ENB=góc ACB
=>NE//AC
=>DE vuông góc EN
Xét ΔIBE và ΔICM có
góc EIB=góc CIm
IB=IC
góc IBE=góc ICM
=>ΔIBE=ΔICM
=>IE=IM
ΔEFM vuông tại F
=>IE=IM=IF
DENM có IE=IM và ID=IN nên DENM là hình bình hành
=>DENM là hình chữ nhật(Vì DE vuông góc EN)
=>IE=ID=IN=IM
=>ID=IE=IF
=>I là tâm đường tròn ngoại tiếp ΔDEF
mà I cố định
nên tâm đường tròn ngoại tiếp ΔDEF là một điểm cố định
Câu 1
Xét tam giác OAC ta có
AC = OA = OC ( gt )
=> tam giác OAC là tam giác đều
=>\(\widehat{CAB}=60^0\)
\(\widehat{ACB}=90^0\)(góc nội tiếp chắn nửa đường tròn )
=> \(\widehat{ABC}=180^0-90^0-60^0=30^0\)
Vậy ..............
P/s hình hơi xấu thông cảm
Câu 2 )
Xét tam giác vuông KCB , ta có :
EC = EK ( gt )
MB = MC ( gt)
=>EM là đường trung bình của tam giác KCB
=> \(\widehat{BKC}=\widehat{MEC}=90^0\)
Chứng minh tương tự : Xét tam giác ECB
=> \(\widehat{CIB}=\widehat{MPB}=90^0\)
Xét tứ giác BIKC , ta có:
\(\widehat{BKC}\)và \(\widehat{BIC}\)cùng nhìn BC dưới 1 góc 90 độ )
=> Tứ giác BIKC nội tiếp đường tròn
=> 4 điểm B,I,K,C cùng nằm trên 1 đường tròn
P/ s hình tự vẽ , tham khảo bài làm nha bạn