K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

a)  ta có  OP vuông góc AP tại P 

             OQ vuông góc AQ tại Q

xét tứ giác APOQ có P +Q = 90 độ => tứ giác APOQ Nội tiếp đường tròn (định lý đảo tứ giác nội tiếp)

b)  xét 2 tam giác KAN và tam giác KAP => KNA đồng dạng KAP 

                       => \(\frac{KA}{KN}\)=\(\frac{KB}{KA}\) => \(^{KA^2=KN.KP}\)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(BC=\sqrt{AB^2-AC^2}=R\sqrt{3}\)

b: Ta có: ΔOAC cân tại O

mà OD là đường cao

nên OD là tia phân giác của góc COA

Xét ΔOCD và ΔOAD có

OC=OA

\(\widehat{COD}=\widehat{AOD}\)

OD chung

Do đó: ΔOCD=ΔOAD
Suy ra: \(\widehat{OCD}=\widehat{OAD}=90^0\)

hay AD là tiếp tuyến của (O)

2 tháng 12 2015

Bạn tự vẽ hình nhé! 

+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)

- Nối O với F. Kẻ OH | BF. 

Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2

Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)

=> góc ABF = góc BOF/2   (*)

- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2

Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc  FOC/ 2

=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2 

=> góc BDF = góc BOF/2 (**)

Từ (*)(**) => góc ABF = BDF mà góc FAB chung 

=>  Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2

+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung 

=> Tam giác AFI đồng dạng với tam giác AOD  (c - g- c)

=> góc AIF = ADO ( 2 góc tương ứng)