Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ I là chân đường cao hạ từ O đến AB. => OI = R.\(\dfrac{\sqrt{3}}{2}\).
Cos\(\widehat{IAO}\) = \(\dfrac{\sqrt{3}}{2}\)=> \(\widehat{A}\)= \(^{^{ }30^o}\). \(\widehat{OAB}=\widehat{HBA}\) (so le trong).
AH = Sin 30. AB = \(\dfrac{1}{2}.R.\sqrt{3}=R.\dfrac{\sqrt{3}}{2}\)
Vậy H cách A khoảng bằng \(\dfrac{\sqrt{3}}{2}\)
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Cảm ơn bạn