Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{ACB}=90^o\). Vậy tam giác ABC vuông tại C.
Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:
\(PA^2=PC.PB\)
b) Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có PA = PM
Lại có OA = OM nên PO là trung trực của AM.
c) Ta có \(\widehat{CBA}=30^o\Rightarrow\widehat{CAB}=60^o\) hay tam giác CAO đều. Suy ra AC = R
Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:
\(\frac{1}{AC^2}=\frac{1}{AP^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{R^2}=\frac{1}{AP^2}+\frac{1}{4R^2}\)
\(\Rightarrow AP=\frac{2R}{\sqrt{3}}\)
\(\Rightarrow PO=\sqrt{PA^2+AO^2}=\frac{\sqrt{21}R}{3}\)
Xét tam giác vuông PAO, đường cao AN, áo dụng hệ thức lượng ta có:
\(\frac{1}{AN^2}=\frac{1}{PA^2}+\frac{1}{AO^2}\Rightarrow AN=\frac{2\sqrt{7}R}{7}\)
\(\Rightarrow AM=2AN=\frac{4\sqrt{7}}{7}R\)
d) Kéo dài MB cắt AP tại E.
Ta thấy ngay tam giác EMA vuông có PM = PA nên PA = PE
Do MH // AE nên áo dụng định lý Ta let ta có:
\(\frac{HI}{AP}=\frac{IB}{PB}=\frac{MI}{EP}\)
Do AP = EP nên MI = HI
Ta cũng có N là trung điểm AM nên NI là đường trung bình tam giác AMH.
\(\Rightarrow NI=\frac{AH}{2}\)
Xét tam giác vuông AMB, đường cao MH, áp dụng hệ thức lượng ta có:
\(AH.AB=AM^2\Rightarrow AH=\frac{8}{7}R\)
\(\Rightarrow NI=\frac{4}{7}R\)
Cô hướng dẫn nhé nguyen van vu :)
K
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.