Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot6=3^2=9\)
=>OH=1,5(cm)
b: Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)
nên ΔOBI đều
ΔOBI đều
mà BH là đường cao
nên H là trung điểm của OI
Xét tứ giác OBIC có
H là trung điểm chung của OI và BC
nên OBIC là hình bình hành
Hình bình hành OBIC có OB=OC
nên OBIC là hình thoi
ΔOBA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BAO}+60^0=90^0\)
=>\(\widehat{BAO}=30^0\)
Xét ΔABC có AB=AC
nên ΔABC cân tại A
ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của \(\widehat{BAC}\)
=>\(\widehat{BAC}=2\cdot\widehat{BAH}=60^0\)
=>ΔBAC đều
c: Xét (O) có
DB,DM là tiếp tuyến
Do đó: DB=DM
Xét (O) có
EM,EC là tiếp tuyến
=>EM=EC
DE=DM+ME
mà DM=DB và CE=EM
nên DE=DB+EC
ΔOBA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=6^2-3^2=27\)
=>\(BA=3\sqrt{3}\left(cm\right)\)
\(C_{ADE}=AD+DE+AE\)
\(=AD+AE+DB+EC\)
=AB+AC
\(=3\sqrt{3}\cdot2=6\sqrt{3}\left(cm\right)\)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra O,H,A thẳng hàng