Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [F, A] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng m: Đoạn thẳng [E, M] Đoạn thẳng n: Đoạn thẳng [D, F] Đoạn thẳng p: Đoạn thẳng [G, B] Đoạn thẳng q: Đoạn thẳng [E, C] O = (2.08, 1.84) O = (2.08, 1.84) O = (2.08, 1.84) A = (12.48, 2.58) A = (12.48, 2.58) A = (12.48, 2.58) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j
a) Do DF // AC nên \(\widehat{MAG}=\widehat{GFD}\) (Hai góc so le trong) .
Lại có \(\widehat{GFD}=\widehat{GED}\) (Hai góc nội tiếp cùng chắn cung GD)
Nên \(\widehat{MAG}=\widehat{GED}\)
Xét tam giác AMG và tam giác EMA có:
\(\widehat{MAG}=\widehat{MEA}\) (cmt)
Góc M chung
Vậy nên \(\Delta AMG\sim\Delta EMA\left(g-g\right)\Rightarrow\frac{MA}{ME}=\frac{MG}{MA}\Rightarrow MA^2=MG.ME\)
b) Do tứ giác ECBG nội tiếp nên \(\widehat{BCE}=\widehat{BGM}\) (Góc ngoài tại đỉnh đối của tứ giác nội tiếp)
Vậy xét tam giác MGB và MCE có:
\(\widehat{BGM}=\widehat{ECM}\left(cmt\right)\)
Góc M chung
Vậy nên \(\Delta MGB\sim\Delta MCE\left(g-g\right)\)
c) Theo câu a, ta có \(AM^2=MG.ME\)
Theo câu b, \(\Delta MGB\sim\Delta MCE\Rightarrow\frac{MG}{MC}=\frac{MB}{ME}\Rightarrow MG.ME=MB.MC\)
Vậy nên \(MA^2=MB.MC\)
Suy ra \(MA^2+MA.MC=MB.MC+MA.MC\)
\(\Leftrightarrow MA\left(MA+MC\right)=MC\left(MB+MA\right)\)
\(\Leftrightarrow MA.AC=MC.AB\)
\(\Leftrightarrow AB\left(AC-AM\right)=MA.AC\)
\(\Leftrightarrow AB.AC-AB.AM=AM.AC\)
\(\Leftrightarrow AB.AC=AM\left(AB+AC\right)\)
\(\Leftrightarrow\frac{1}{AM}=\frac{AB+AC}{AB.AC}\)
\(\Leftrightarrow\frac{1}{AM}=\frac{1}{AB}+\frac{1}{AC}\left(đpcm\right)\)
A B C M O D E F I P Q T
1) Ta có 4 điểm B,O,C,M cùng thuộc đường tròn đường kính OM (^MBO = ^MCO = 900) (1)
Do MI // AB và MB tiếp xúc với (O) tại B nên ^CIM = ^CAB = ^CBM
=> 4 điểm B,I,C,M cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra 5 điểm M,B,O,I,C cùng thuộc một đường tròn (đpcm).
2) Theo câu a thì M,B,I,C cùng thuộc (OM), có BC giao IM tại F => FI.FM = FB.FC
Đường tròn (O) có dây BC giao DE tại F nên FB.FC = FD.FE
Do vậy FI.FM = FD.FE => \(\frac{FI}{FE}=\frac{FD}{FM}\) (đpcm).
3) Điểm I thuộc đường tròn (OM) => ^OIM = 900 hay ^QIM = 900
Dễ thấy FQ.FT = FB.FC = FI.FM, suy ra tứ giác QMTI nội tiếp => ^QTM = ^QIM = 900
=> \(\Delta\)QTM vuông tại T. Theo ĐL Pytagoras: \(TQ^2+TM^2=QM^2\)
Vậy thì \(\frac{TQ^2+TM^2}{MQ^2}=1.\)
A B C O D E H I F
a) Xét \(\Delta ABE\)và \(\Delta ABD\)có :
\(\widehat{BAE}=\widehat{BAD}\); \(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\approx\Delta ADB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AD.AE=AB^2\)( 1 )
Xét \(\Delta ABO\)vuông tại B ( do AB là tiếp tuyến ), đường cao BH ( tự c/m ), ta có hệ thức lượng
\(AH.AO=AB^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(AD.AE=AH.AO=AB^2\)
b) \(AD.AE=AH.AO\Rightarrow\frac{AE}{AH}=\frac{AO}{AD}\)
Xét \(\Delta AEH\)và \(\Delta AOD\)có :
\(\frac{AE}{AH}=\frac{AO}{AD}\); \(\widehat{EAH}\)( chung )
\(\Rightarrow\Delta AEH\approx\Delta AOD\left(c.g.c\right)\)\(\Rightarrow\widehat{AHE}=\widehat{ADO}\)( 3 )
Mà \(\Delta ODE\)cân tại O ( do OE = OD ) \(\Rightarrow\widehat{OED}=\widehat{ODE}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\widehat{AHE}=\widehat{OED}\)
c) đường thẳng qua B vuông góc với CD tại I
Xét hai tam giác vuông BID và CBI có :
\(\widehat{IDB}=\widehat{CBI}\); \(\widehat{BID}=\widehat{BIC}=90^o\)
\(\Rightarrow\Delta BID\approx\Delta CIB\left(g.g\right)\) \(\Rightarrow\frac{ID}{IB}=\frac{IB}{IC}=\frac{DB}{BC}\)
\(\Rightarrow\frac{ID}{IB}.\frac{IB}{IC}=\frac{ID}{IC}=\frac{BD^2}{BC^2}\)
Mặt khác : \(\Delta DAC\)có : BI // AC
\(\Rightarrow\frac{FI}{AC}=\frac{DI}{DC}=\frac{DI}{DI+CI}=\frac{1}{1+\frac{CI}{DI}}=\frac{1}{1+\frac{BC^2}{BD^2}}=\frac{BD^2}{BD^2+BC^2}=\frac{BD^2}{4R^2}\)( R là bán kính )
\(\Rightarrow FI=\frac{BD^2.AC}{4R^2}\)( 5 )
Xét \(\Delta BCD\)và \(\Delta ACO\)có :
\(\widehat{BCD}=\widehat{OAC}\); \(\widehat{CBD}=\widehat{ACO}=90^o\)
\(\Rightarrow\Delta BCD\approx\Delta CAO\left(g.g\right)\)\(\Rightarrow\frac{BC}{AC}=\frac{BD}{OC}\Rightarrow BC=\frac{AC.BD}{R}\)( 6 )
Xét 2 tam giác vuông BIC và BCD có :
\(\widehat{BCD}\)( chung ) ; \(\widehat{BIC}=\widehat{CBD}=90^o\)
\(\Rightarrow\Delta BIC\approx\Delta DBC\)( g.g )
\(\Rightarrow\frac{IB}{BD}=\frac{BC}{CD}\Rightarrow IB=\frac{BC.BD}{2R}\)( 7 )
Từ ( 6 ) và ( 7 ) suy ra : \(IB=\frac{AC.BD^2}{2R^2}\)( 8 )
Từ ( 5 ) và ( 8 ) suy ra : \(IF=\frac{IB}{2}\Rightarrow\)F là trung điểm của IB
\(\Rightarrow HF\)là đường trung bình của \(\Delta BCI\)\(\Rightarrow HF//CD\)