Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOM vuông tại A có
\(\sin\widehat{AMO}=\dfrac{OA}{OM}\)
\(\Leftrightarrow OM=OA:\dfrac{1}{2}=2\cdot OA=2\cdot R\)
b: Gọi giao điểm của OM và AB là H
Suy ra: H là trung điểm của AB
Xét ΔOAM vuông tại A có
\(OM^2=OA^2+AM^2\)
\(\Leftrightarrow AM=\dfrac{R\sqrt{3}}{2}\left(cm\right)\)
Xét ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM
nên \(AH\cdot OM=OA\cdot AM\)
\(\Leftrightarrow AH\cdot2\cdot R=\dfrac{R^2\sqrt{3}}{2}\)
\(\Leftrightarrow AH=\dfrac{R^2\sqrt{3}}{2}\cdot\dfrac{1}{2R}=\dfrac{R\sqrt{3}}{4}\)
\(\Leftrightarrow AB=\dfrac{R\sqrt{3}}{2}\)
c: Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)