Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ac là tiếp tuyến (o;r) =) ao vuông góc ac (1
db là tiếp tuyến (o; r)=) ob vuông góc db (2
từ 1, và 2 =) ac//db
=) tứ giac cabd là hình thang
b, dm là tiếp tuyến (o;r)
db là tiếp tuyến (o;r)
=) góc mod bằng góc bod (3)
xét tam giác mon và tam giác bon có :
góc mod = góc bod ( cmt )
mo=ob=r
on chung
=) tam giác mon và tam giác bon bằng nhau ( cgc)
=) mn=nb
lại có :
ao=ob ( =r)
mn=nb (cmt)
=) no là đường trung bình tam giác mab =) no//ma
mà ma vuông mb ( do mo=oa=ob =r => tam giác mab vuông tại m )
=) mb vuông no
hay do vuông mb
tá có : tam giác aeb vuông tại e ( eo=bo=ao=r )
xét tam giác dab
de*da = db^2
xét tam giác : dbo
dn*do=db^2
=) dn*do=de*da
c,
ma//no (cmt )
=> góc dob =góc mao
xét tam giác fao và tam giác dob
góc dob = góc mao
ao=ob (=r)
góc foa = góc dbo
=> tam giác foa = tam giác dbo ( cgv-gn)
fo= db
lại ó : fo vuông ab
db uông ab
=> fo//db (4 )
fo=bd (cmt ) (5)
từ 4, 5 => tứ giác fobd là hình thang
tứ giác fobd là hình thang mà fo vuông ab => tứ giác fobd là hình chữ nhật
d, kẻ cl vuông góc ma vì cm=ca ( mc là tiếp tuyến (o;r) , ca là tiếp tuyến (o;r) )=> tam giác cma là tam giác cân
mà cl lại vuông ma => ml=la hay la= ma/2=r/2
lại có tam giác mao là tam giác đều ( ma=ao=mo=r) => góc mao= 60 độ
góc cam = góc cao - góc mao = 90-60=30 độ
xét tam giác cla vuông tại l
ca= la / cos góc A
ac = (r/2 )/ ( (căn 3)/2 ) = r/(căn 3)
ab = r*2
vì no là đường phân giác tam giác mab => no= 1/2 ma = r/2
xét tam giác dob có :
no*do=ob^2
(r/2)*do=r^2
=> do= r2
xét tam giác dob vuông tại b theo định lý pitago :
do^2- ob^2= db^2 = (r2)^2 - ( r^2)= r^2*3=> db = căn ( r^2*3) = r căn 3
diện tích hình thang :
((ac+db )*ab)/2 = (r^2*4)/căn 3
c
a) Ta có: AC⊥AB(AC là tiếp tuyến tại A của đường tròn (O))
BD⊥AB(BD là tiếp tuyến tại B của đường tròn (O))
Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)
Xét tứ giác ACDB có AC//BD(cmt)
nên ACDB là hình thang có hai đáy là AC và BD(Định nghĩa hình thang)
Hình thang ACDB(AC//BD) có \(\widehat{CAB}=90^0\)(CA⊥AB)
nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)
b) Xét (O) có
BD là tiếp tuyến có B là tiếp điểm(gt)
MD là tiếp tuyến có M là tiếp điểm(gt)
Do đó: BD=MD(Tính chất hai tiếp tuyến cắt nhau)
⇒D nằm trên đường trung trực của BM(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OM=OB(=R)
nên O nằm trên đường trung trực của BM(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OD là đường trung trực của MB
hay OD⊥MB
Xét (O) có
ΔEAB nội tiếp đường tròn(Vì E,A,B(O))
AB là đường kính của (O)
Do đó: ΔEAB vuông tại E(Định lí)
⇒EB⊥EA
hay BE⊥DA
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBA vuông tại B có BE là đường cao ứng với cạnh huyền DA, ta được:
\(DE\cdot DA=DB^2\)(1)
Ta có: BM⊥DO(cmt)
nên BN⊥DO(Vì BM cắt DO tại N)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDOB vuông tại B có BN là đường cao ứng với cạnh huyền DO, ta được:
\(DN\cdot DO=DB^2\)(2)
Từ (1) và (2) suy ra \(DE\cdot DA=DN\cdot DO\)(đpcm)
a, Dễ thấy A M B ^ = 90 0 hay E M F ^ = 90 0 tiếp tuyến CM,CA
=> OC ⊥ AM => O E M ^ = 90 0 Tương tự => O F M ^ = 90 0
Chứng minh được ∆CAO = ∆CMO => A O C ^ = M O C ^
=> OC là tia phân giác của A M O ^
Tương tự OD là tia phân giác của B O M ^ suy ra OC ⊥ OD <=> C O D ^
b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao
=> O E M ^ = 90 0 chứng minh tương tự O F M ^ = 90 0
Vậy MEOF là hình chữ nhật
c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.
Bạn tự vẽ hình nhé :
1.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\)
\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC
Tương tự DMOB nội tiếp đường tròn đường kính OD
2 . Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)
Tương tự DM = DB , OD là phân giác ^BOM
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)
\(\Rightarrow OC\perp OD\)
Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)
Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)
3.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CO\perp AM=E\) là trung điểm AM
Tương tự \(OD\perp BM=F\) là trung điểm BM
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)
Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)
\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM
\(\Rightarrow EFNO\) nội tiếp
\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)
Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO )
\(\Rightarrow EFON\) là hình thang cân
a: Xét tứ giác ACDB có
AC//BD
góc BAC=90 độ
Do đó: ACDB là hình thang vuông
b: Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB
mà OM=OB
nên OD là đường trung trực của MB
=>DO vuông góc với MB
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đo: ΔAMB vuông tại M
=>AM//OD
c: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA
mà OA=OM
nên OC là đường trung trực của AM
OE*OC=OM^2
OF*OD=OM^2
Do đó: OE*OC=OF*OD