K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

ac là tiếp tuyến (o;r) =) ao vuông góc ac (1

db là tiếp tuyến (o; r)=) ob vuông góc db  (2

từ 1, và 2  =) ac//db 

=) tứ giac cabd là hình thang

b, dm là tiếp tuyến (o;r)

db là tiếp tuyến (o;r) 

=) góc mod bằng góc bod (3)

xét tam giác mon và tam giác bon có : 

góc mod = góc bod ( cmt )

mo=ob=r 

on chung 

=) tam giác mon và tam giác bon bằng nhau ( cgc) 

=) mn=nb

lại có :

 ao=ob ( =r) 

mn=nb (cmt) 

=) no là đường trung bình tam giác mab =) no//ma 

mà ma vuông mb ( do mo=oa=ob =r => tam giác mab vuông tại m ) 

=) mb vuông no 

hay do vuông mb 

tá có  : tam giác aeb vuông tại e ( eo=bo=ao=r ) 

xét tam giác dab 

de*da = db^2

xét tam giác : dbo 

dn*do=db^2 

=) dn*do=de*da 

c,

ma//no (cmt ) 

=> góc dob =góc mao 

xét tam giác fao và tam giác dob  

góc dob = góc mao 

ao=ob (=r) 

góc foa = góc dbo 

=> tam giác foa = tam giác dbo ( cgv-gn) 

fo= db 

lại ó :  fo vuông ab 

db uông ab 

=> fo//db (4 )

fo=bd (cmt ) (5)

từ 4, 5 => tứ giác fobd là hình thang 

tứ giác fobd là hình thang mà fo vuông ab => tứ giác fobd là hình chữ nhật 

d, kẻ cl vuông góc ma vì cm=ca ( mc là tiếp tuyến (o;r) , ca là tiếp tuyến (o;r) )=> tam giác cma là tam giác cân

mà cl lại vuông ma => ml=la hay la= ma/2=r/2 

lại có tam giác mao là tam giác đều ( ma=ao=mo=r) => góc mao= 60 độ 

góc cam = góc cao - góc mao = 90-60=30 độ 

xét tam giác cla vuông tại l

ca= la / cos góc A 

ac = (r/2 )/ ( (căn 3)/2 ) = r/(căn 3)

ab = r*2 

vì no là đường phân giác tam giác mab => no= 1/2 ma = r/2 

xét tam giác dob có :

no*do=ob^2 

(r/2)*do=r^2 

=> do= r2 

xét tam giác dob vuông tại b theo định lý pitago : 

do^2- ob^2= db^2 = (r2)^2 - ( r^2)= r^2*3=> db = căn ( r^2*3) = r căn 3 

diện tích hình thang : 

((ac+db )*ab)/2 = (r^2*4)/căn 3

c

19 tháng 7 2018

a, Dễ thấy  A M B ^ = 90 0 hay E M F ^ = 90 0  tiếp tuyến CM,CA

=> OC ⊥ AM =>  O E M ^ = 90 0 Tương tự =>  O F M ^ = 90 0

Chứng minh được ∆CAO = ∆CMO =>  A O C ^ = M O C ^

=> OC là tia phân giác của A M O ^

Tương tự OD là tia phân giác của  B O M ^  suy ra OC ⊥ OD <=>  C O D ^

b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao

=>  O E M ^ = 90 0  chứng minh tương tự  O F M ^ = 90 0

Vậy MEOF là hình chữ nhật

c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.

a: Xét tứ giác ACDB có

AC//BD

góc BAC=90 độ

Do đó: ACDB là hình thang vuông

b: Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB

mà OM=OB

nên OD là đường trung trực của MB

=>DO vuông góc với MB

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đo: ΔAMB vuông tại M

=>AM//OD

c: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA

mà OA=OM

nên OC là đường trung trực của AM

OE*OC=OM^2

OF*OD=OM^2

Do đó: OE*OC=OF*OD