K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

hình như sai đề mk ko hiểu đề này thì mk hiểu

Từ điểm A nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB và AC. Gọi H là giao điểm của OA và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Tính tích OH.OA theo R

bài làm

Từ điểm A nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB và AC. Gọi H là giao điểm của OA và BC.
a) Chứng minh tứ giác ABOC nội tiếp
b) Tính tích OH.OA theo R
c) Gọi E là hình chiếu của C trên đường kính BD của đường tròn tâm O. Chứng minh góc HEB bằng với góc HAB 
d) AD cắt CE ở K. Chứng minh K là trung điểm của CE
e) Tính theo R diện tích hình giới hạn bởi 2 tiếp tuyến AB, AC và cung nhỏ BC của đường tròn tâm O trong trường hợp OA = 2R

10 tháng 2 2021

a.Ta có BC là đường kính của (O)→AB⊥AC
Mà HM⊥BC

→HAC^=HMC^=90o

→HACM nội tiếp đường tròn đường kính CH

b.Ta có AHMC nội tiếp

→HAM^=HCM^=DCB^=DAB^

→AB là phân giác DAM^

c.Vì BC là đường kính của (O)→CD⊥BD→CD⊥BI

Xét ΔIBC có IM⊥BC,CD⊥BI

Mà IM∩CD=H→H là trực tâm ΔIBC→BH⊥IC→BA⊥IC
Mà AB⊥AC→I,A,C thẳng hàng

Xét ΔBDH,ΔBAI có:

Chung B^

BDH^=BAI^=90o

→ΔBDH∼ΔBAI(g.g)

→BDBA=BHBI

10 tháng 2 2021

Thanh Nguyen Phuc  : Copy thì nhớ ghi nguồn nhé , cóp lỗi hết cả bài làm rồi kìa :))

12 tháng 5 2021

                           Bài làm :

a) Ta có :

\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)

\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)

Từ đó ; ta có :

\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)

=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện  = 180 độ 

=> Điều phải chứng minh

b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp 

\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)

Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC

\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)

Vì CD⊥AB ; MH⊥AB

=> CD//MH 

=>∠ADC = ∠AMH ( 2góc so le trong ) (3)

Từ (1) ; (2) ; (3) 

\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)

=> Điều phải chứng minh

c)∠AOC = 45o

=>∠COB = 180 - 45 = 135o

\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)

a) Xét tứ giác AHMC có 

góc ACM + góc AHM = 180 độ

Vậy tứ giác AHMC nội tiếp