K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

là góc tạo bởi hai tiếp tuyến BA và dây cung BC của (O). Dây BC = R suy ra = = .

= - = - = (tổng các góc của một tứ giác bằng )

3 tháng 9 2017

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 1 2019

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Trong một đường tròn, số đo của cung là số đo của góc ở tâm chắn cung đó.

+ Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.

30 tháng 8 2019

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 1 2022

Xét tam giác OBA có OB = OC = BC = R

Vậy tam giác OAB là tam giác đều 

=> ^BOC = ^OBC = ^OCB = 600

Vì AB ; AC là tiếp tuyến đường tròn (O) với B;C là tiếp điểm 

=> ^OBA = ^OCA = 900

=> ^ABC = ^OBA - ^OBC = 900 - 600 = 300

Do AB = AC ( tc tiếp tuyến cắt nhau ) 

=> ^ABC = ^ACB = 300 

=> ^BAC = 1800 - 2^ABC = 1200

1 tháng 3 2021

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

a: góc OBA+góc OCA=180 độ

=>ABOC nội tiếp

b: Xét ΔOCB co OB=OC=BC

nen ΔOBC đều

=>góc OBC=60 độ

=>góc ABC=30 độ

30 tháng 4 2020

mình không vẽ hình nha

30 tháng 4 2020

a) vì AD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC

\(\Rightarrow OD\perp BC\)

Mà \(DE\perp OD\)

\(\Rightarrow BC//DE\)

b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)

\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)

suy ra tứ giác ACIK nội tiếp 

c) OD cắt BC tại H

Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)

Xét \(\Delta OHC\)vuông tại H có :

\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\widehat{HOC}=60^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widebat{BC}=120^o\)

P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha. 

8 tháng 9 2018

a, AD là phân giác  B A C ^

=> D là điểm chính giữa  B C ⏜ => OD ⊥ BC

Mà DE là tiếp tuyến => ĐPCM

b,  E C D ^ = 1 2 s đ C D ⏜ = D A C ^ = B A D ^ => Đpcm

c, HC =  P 3 2 =>  H O C ^ = 60 0 =>  B O C ^ = 120 0

=>  l B C ⏜ = π . R . 120 0 180 0 = 2 3 πR