Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác SAOB có
\(\widehat{SAO}+\widehat{SBO}=180^0\left(90^0+90^0=180^0\right)\)
nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
SA là tiếp tuyến có A là tiếp điểm(gt)
SB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: SA=SB(Tính chất hai tiếp tuyến cắt nhau)
Ta có: SA=SB(cmt)
nên S nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra SO là đường trung trực của AB
hay SO\(\perp\)AB(Đpcm)
b) đề phải là \(SA^2=SD.SE\) chứ SD không bằng SE sao \(SD^2=SD.SE\) được
Vì AE là đường kính \(\Rightarrow\angle ADE=90\) mà \(\angle SAE=90\)
\(\Rightarrow\Delta SAE\) vuông tại A có AD là đường cao
\(\Rightarrow SA^2=SD.SE\)
c) Trong (O) có DE là dây cung không đi qua O và I là trung điểm DE
\(\Rightarrow OI\bot DE\Rightarrow\angle OIS=90\Rightarrow\angle OIS=\angle OBS=90\)
\(\Rightarrow OIBS\) nội tiếp mà SAOB nội tiếp (câu a)
\(\Rightarrow O,I,A,S,B\) cùng thuộc 1 đường tròn
\(\Rightarrow AIBS\) nội tiếp \(\Rightarrow\angle AIS=\angle ABS=\angle SAB\) (\(\Delta SAB\) cân tại S)
Xét \(\Delta SAK\) và \(\Delta SIA:\) Ta có: \(\left\{{}\begin{matrix}\angle SIA=\angle SAK\\\angle ISAchung\end{matrix}\right.\)
\(\Rightarrow\Delta SAK\sim\Delta SIA\left(g-g\right)\Rightarrow\dfrac{SA}{SI}=\dfrac{SK}{SA}\Rightarrow SA^2=SK.SI\)
mà \(SA^2=SD.SE\Rightarrow SD.SE=SK.SI\)
d) AB cắt OI tại F'
Vì AE là đường kính \(\Rightarrow\angle ABE=90\Rightarrow F'BE=90\)
\(\Rightarrow\angle F'BE=\angle F'IE\Rightarrow F'BIE\) nội tiếp \(\Rightarrow\angle ABI=\angle F'EI\)
mà \(\angle ABI=\angle ASI\) (AIBS nội tiếp) \(=\angle ASE\)
\(\Rightarrow\angle F'EI+\angle AES=\angle ASE+\angle AES=90\)
\(\Rightarrow\angle F'EO=90\Rightarrow EF'\) là tiếp tuyến \(\Rightarrow\) đpcm
O A B x y C C E F D I H K
a, Theo t/c tiếp tuyến của đường tròn
EA = EC
FC = FB
=> EC + CF = EA + BF
=> EF = AE + BF
b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)
=> \(\Delta\)ABC vuông tại C
=> AC \(\perp\)BC
Xét \(\Delta\)DAB vuông tại A có AC là đường cao
=> \(AD^2=DC.DB\)(Hệ thức lượng)
c,Chưa ra, mai nghĩ ra thì giải cho ^^
A B O C H D E F K M I J
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.