K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

bài náy giống bài của mik quá bn ơi

12 tháng 5 2017

Gọi \(OH=x\Rightarrow HD=\sqrt{R^2-x^2}\)

\(S_{ODH}=\frac{1}{2}.OH.HD=\frac{1}{2}x.\sqrt{R^2-x^2}\le\frac{1}{2}.\frac{x^2+\left(R^2-x^2\right)}{2}=\frac{R^2}{4}\)

Vậy \(maxS_{ODH}=\frac{R^2}{4}\) khi \(x=\sqrt{R^2-x^2}\Rightarrow x=\frac{R}{\sqrt{2}}\Rightarrow OH=\frac{OA}{\sqrt{2}}\)

14 tháng 5 2017

chu vi mà cô . có phải diện rích đâu ạ !

28 tháng 4 2023

loading...

꧁༺ml78871600༻꧂  
1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB. Từ A...
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

14 tháng 7 2017

a, Học sinh tự chứng minh

b, DADB vuông tại D, có đường cao DH Þ  A D 2  = AH.AB

c,  E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ;  E A C ^ = K H C ^  (Tứ giác AKCH nội tiếp)

=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm