K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

1) Hình vẽ câu 1) đúng

Ta có  A E C ^ = A D C ^ = 90 0 ⇒ A E C ^ + A D C ^ = 180 0  do đó, tứ giác ADCE nội tiếp.

2) Chứng minh tương tự tứ giác BDCF nội tiếp.

Do các tứ giác A D C E ,   B D C F  nội tiếp nên  B 1 ^ = F 1 ^ , A 1 ^ = D 1 ^

Mà AM là tiếp tuyến của đường tròn (O) nên  A 1 ^ = 1 2 s đ A C ⏜ = B 1 ^ ⇒ D 1 ^ = F 1 ^ .  

Chứng minh tương tự  E 1 ^ = D 2 ^ .  Do đó,  Δ C D E ∽ Δ C F D g.g

3) Gọi Cx là tia đối của tia CD

Do các tứ giác  A D C E ,   B D C F nội tiếp nên  D A E ^ = E C x ^ , D B F ^ = F C x ^  

M A B ^ = M B A ^ ⇒ E C x ^ = F C x ^  nên Cx là phân giác góc E C F ^ .

4) Theo chứng minh trên  A 2 ^ = D 2 ^ , B 1 ^ = D 1 ^  

Mà  A 2 ^ + B 1 ^ + A C B ^ = 180 0 ⇒ D 2 ^ + D 1 ^ + A C B ^ = 180 0 ⇒ I C K ^ + I D K ^ = 180 0  

Do đó, tứ giác CIKD nội tiếp  ⇒ K 1 ^ = D 1 ^   D 1 ^ = B 1 ^ ⇒ I K / / A B

20 tháng 5 2016

a) có 2 góc vg cùng nhìn 1 cạnh

b)EAC=ACO

tam giác AOC cân tại O

=>.......................

c) theo câu a =>AFE=ADE

từ câu b =>CAB=CAE

CAB=BCD

=>...........................

d) đang suy nghĩ

a: góc AKB=1/2*180=90 độ

góc HCB+góc HKB=180 độ

=>BKHC nội tiếp

b: Xét ΔACH vuông tại C và ΔAKB vuông tại K có

góc CAH chug

=>ΔACH đồng dạng với ΔAKB

=>AC/AK=AH/AB

=>AK*AH=AC*AB=1/2R*2R=R^2

26 tháng 9 2019

Học sinh tự chứng minh

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang