Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: ON = 8 = OM + MN => OM = ON - MN
và: O'M = 6 = O'N + MN => O'N = O'M - MN
mà: O'O = OM + MN + NO' = 11
=> O'O= ON - MN + MN + O'M - MN
= ON + O'M - MN
Thay vào, ta được: 11= 8+ 6 - MN => MN =3
Vậy MN = 3 cm
11 =
a,Vì BAC = 90 nên CAO'+BAO=90
O'A=OC nên tam giác O'CA cân
Ta có CO'A=180-2*CAO'
tuong tu BOA=180-2*BAO
CO'A+BOA=180
nen o'c //ob ( trong cung phia)
b,tam giác IBO có CO' //OB
IC/IB=O'C/OB = 1/3 nên IC/(IC+4)=1/3
Từ đó bạn tư làm tiếp nha!!!!!
Bài 1:
a: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
OI là một phần đường kính
CE là dây
OI⊥CE tại I
Do đó: I là trung điểm của CE
Xét ΔDCE có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDCE cân tại D
Xét ΔOED và ΔOCD có
OE=OC
ED=CD
OD chung
Do đó: ΔOED=ΔOCD
Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)
hay DE là tiếp tuyến của (O)
Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))
a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)
b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90
T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90
Tương tự, ^APM = 90
=> đpcm
c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)
=> đpcm
d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24
e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC
f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm
Ta có:
ON = 8cm, O'M = 6cm, OO' = 10cm
ON + O'M = OM + MN + MN + O'N = (OM + MN + O'N) + MN = OO' + MN
⇒ 8 + 6 = 10 + MN ⇒ MN = 4cm
Đáp án: D