K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAM vuông tại A có cosAOM=OA/OM=1/2

nên góc AOM=60 độ

=>góc AOB=60 độ

=>sđ cung AB=60 độ

b: Xét (O) có

MA,MC là tiếp tuyến

nên MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc với AC

c: Xét ΔOAB có OA=OB và góc AOB=60 độ

nên ΔOAB đều

mà AH là đườg cao

nên H là trung điểm của OB

=>HO=HB

Vì MO là trung trực của AC

nên MO vuông góc AC tại H và H là trung điểm của AC

HA*HC=HA^2

HO*HM=HA^2

=>HA*HC=HO*HM

=>HA*HC=HB*HM

d: Xét ΔOBC có OB=OC và góc BOC=60 độ

nên ΔBCO đều

=>OB=OC=BC=OA=AB

=>OA=AB=BC=OC

=>OABC là hình thoi

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

nên MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

BC\(\perp\)OM

Do đó: CD//OM

c: Xét (O) có

ΔBHD nội tiếp

BD là đường kính

Do đó: ΔBHD vuông tại H

=>BH\(\perp\)HD tại H

=>BH\(\perp\)DM tại H

Xét ΔBDM vuông tại B có BH là đường cao

nên \(MH\cdot MD=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)

=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

Xét ΔMHI và ΔMOD có

\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

góc HMI chung

Do đó: ΔMHI đồng dạng với ΔMOD

=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)

mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)

nên \(\widehat{MIH}=\widehat{OHD}\)