Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOAB vuông tại B có
\(\sin\widehat{OAB}=\dfrac{OB}{OA}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{OAB}=30^0\)
\(\Leftrightarrow\widehat{BOA}=60^0\)
2: Ta có: C và B đối xứng nhau qua OA
nên OA là đường trung trực của BC
Suy ra: OB=OC và AB=AC
hay OC=R
Suy ra: C nằm trên (O)
Xét ΔOBA và ΔOCA có
OA chung
OB=OC
AB=AC
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}\)
mà \(\widehat{OBA}=90^0\)
nên \(\widehat{OCA}=90^0\)
\(\Leftrightarrow AC\perp OC\) tại C
hay AC là tiếp tuyến của (O)
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a: MB là tiếp tuyến của (O), B là tiếp điểm
nên MB\(\perp\)BO tại B
=>ΔBOM vuông tại B
b:
ΔOBH vuông tại H
=>\(BH^2+HO^2=BO^2\)
=>\(BH^2=5^2-3^2=16\)
=>BH=4(cm)
Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot OM=OB^2\)
=>\(OM=\dfrac{5^2}{3}=\dfrac{25}{3}\left(cm\right)\)
ΔOBM vuông tại B
=>\(OB^2+BM^2=OM^2\)
=>\(BM^2+5^2=\left(\dfrac{25}{3}\right)^2\)
=>\(BM^2=\dfrac{625}{9}-25=\dfrac{400}{9}\)
=>BM=20/3(cm)
c: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{BOC}\)
Xét ΔOBM và ΔOCM có
OB=OC
\(\widehat{BOM}=\widehat{COM}\)
OM chung
Do đó: ΔOBM=ΔOCM
=>\(\widehat{OBM}=\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)
d: Xét tứ giác OBMC có
\(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)
=>OBMC là tứ giác nội tiếp đường tròn đường kính OM
Tâm là trung điểm của OM
ờờờờờờờờờờờờ