Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
b: Xét ΔBNH vuông tại N và ΔBMA vuông tại M có
\(\widehat{NBH}\) chung
Do đó: ΔBNH∼ΔBMA
Suy ra: BN/BM=BH/BA
hay \(BN\cdot BA=BH\cdot BM\)
Xét ΔCMH vuông tại M và ΔCNA vuông tại N có
\(\widehat{MCH}\) chung
Do đó: ΔCMH∼ΔCNA
Suy ra: CM/CN=CH/CA
hay \(CM\cdot CA=CH\cdot CN\)
\(BN\cdot BA+CM\cdot CA=BM\cdot BM+CH\cdot CN=BC^2\)
a) Xét 2 tam giác ABE và ACF, ta có:
\(\widehat{AEB}=\widehat{ACF}=90^o\) và \(\widehat{A}\) chung
nên \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) \(\Rightarrow AB.AF=AC.AE\) (đpcm)
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó dễ dàng chứng minh \(\Delta AEF~\Delta ABC\left(c.g.c\right)\)
c) Kẻ đường kính AP của (O). Ta có \(\left\{{}\begin{matrix}AB\perp BP\\AB\perp HC\end{matrix}\right.\) \(\Rightarrow\) BP//HC
CMTT, ta có CP//HB, dẫn đến tứ giác BHCP là hình bình hành. Lại có A' là trung điểm BC \(\Rightarrow\) A' cũng là trung điểm HP.
Do đó OA' là đường trung bình của tam giác PAH \(\Rightarrow AH=2A'O\left(đpcm\right)\)
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định
Do tứ giác BCEF nội tiếp nên ME . MF = MB . MC
Lại có tứ giác BCKA nội tiếp nên MC . MB = MK . MA
Suy ra MK . MA = ME . MF nên tứ giác AKEF nội tiếp.
Mà tứ giác AEHF nội tiếp nên 5 điểm A, E, F, H, K đồng viên.
Suy ra \(\widehat{HKA}=\widehat{HEA}=90^o\Rightarrow HK\perp AM\).
a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)
=> AEHF là tứ giác nt
b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o
=> BCEF là tứ giác nt
=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))
Xét \(\Delta KBF\)và \(\Delta KEC\)có
\(\widehat{KBF}=\widehat{KEC}\)
\(\widehat{CKE}\)chung
=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)
=> \(\frac{KB}{KE}=\frac{KF}{KC}\)
=> KB . KC = KE . KF (1)
c) Nối M với B
Xét (O) có tứ giác AMBC nội tiếp đường tròn đó
=> \(\widehat{KBM}=\widehat{KAB}\)
Xét \(\Delta KBM\)và \(\Delta KAC\)có
\(\widehat{KBM}=\widehat{KAC}\)
\(\widehat{AKC}\)chung
=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)
=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)
Từ (1) (2) => KE . KF = KA . KM
=> \(\frac{KF}{KA}=\frac{KM}{KE}\)
Xét \(\Delta KFMvà\Delta KAE\)có
\(\widehat{AFE}\)chung
\(\frac{KF}{KA}=\frac{KM}{KE}\)
=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g) <=> \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)
Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp
=> A, M, F ,E cùng thuộc một đường tròn
Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)
=> A,F,M,H,E cùng thuộc một đường tròn
=> AMHE là tứ giác nt
=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)
=> \(MH\perp AK\)
PHẦN D NGHĨ SAU NHÉ
d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC