Cho đường tròn (C): x 2 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

Đường tròn (C): x 2 + y 2 − 6 x + 8 y − 24 = 0  có tâm I(3; - 4) và bán kính R = 7.

Khoảng cách d I ,   ∆ = 4.3 + 3. − 4 − m 5 = m 5 .

Để đường thẳng cắt đường tròn theo dây cung có độ dài bằng 10 ta có:

10    = 2     R 2 −    d ( I ;    Δ ) 2 ⇔ 5 =    49 −     m 2 25 ⇔ 25 = 49 −    m 2 25     ⇔ m 2 25    = 24 ⇔ m 2 =  ​ 600 ⇔ m =    ± 10 6

ĐÁP ÁN B

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 6 2022

bvtiv

30 tháng 7 2017

Đáp án B

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

31 tháng 5 2017

a) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)

b) \(-3\le m\le1\)

c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :

\({\Delta _1}:x + y - 1 = 0\)

\({\Delta _2}:x + y - 5 = 0\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Ai giúp mình giải 10 bài này với. Mình cảm ơn m.n rất nhiều (Giải chi tiết dễ hiểu , vì đây là bài tự luận ) Bài 1: Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng d biết d vuông góc với đường thẳng △: \(2x-y+1=0\)và cắt đường tròn (C): \(x^2+y^2+2x-4y-4=0\) theo một dây cung có độ dài bằng 6. Bài 2: Giải phương trình: \(x+4-\sqrt{14x-1}=\frac{\sqrt{10x-9-1}}{x}\) Bài 3: a)...
Đọc tiếp

Ai giúp mình giải 10 bài này với. Mình cảm ơn m.n rất nhiều (Giải chi tiết dễ hiểu , vì đây là bài tự luận )

Bài 1: Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng d biết d vuông góc với đường thẳng △: \(2x-y+1=0\)và cắt đường tròn (C): \(x^2+y^2+2x-4y-4=0\) theo một dây cung có độ dài bằng 6.

Bài 2: Giải phương trình: \(x+4-\sqrt{14x-1}=\frac{\sqrt{10x-9-1}}{x}\)

Bài 3:

a) Cho\(sinx=\frac{3}{5}\left(\frac{\pi}{2}< x< \pi\right)\). Tính \(sin2x\), \(cotx\),\(tan\left(x-\frac{\pi}{4}\right)\)

b)Chứng minh rằng: \(sin^6x+cox^6x=\frac{5}{8}+\frac{3}{8}cos4x\)

c)Cho tam giác ABC có các góc A, B, C thòa mãn hệ thức:

\(sinA+sinB+sinC=sin2A+sin2B+sin2C\)

Chứng minh tam giác ABC là tam giác đều.

Bài 4: Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm M(1;3), N(-1;2) và đường thẳng d: \(3x-4y-6=0\)

a)Viết phương trình đường thẳng đi qua hai điểm M, N.

b)Viết phường trình đường tròn tâm M và tiếp xúc với đường thằng d

c)Cho đường tròn(C) có phương trình: \(x^2+y^2-6x-4y-3=0\) .Viết phương trình đường thẳng d' qua M cắt đường tròn (C) tại hai điểm AB có độ dài nhỏ nhất.

Bài 5: Rút gọn biểu thức \(A=\frac{sinx+sin2x+sin3x}{cosx+cos2+cos3x}\)

Bài 6:Trong mặt phương với hệ tọa độ Oxy cho tam giác ABC cân tại C, phương trình đường thẳng chứa cạnh AB là \(x+y-2=0\) .Biết tam giác ABC có trọng tâm \(G\left(\frac{14}{3};\frac{5}{3}\right)\)và diện tích bằng \(\frac{65}{2}\). Viết phương trình đường tròn ngoại tiếp tam giác ABC.

Bài 7: Cho biểu thức \(A=\frac{cos2\alpha-cos4\text{α}}{sin4\text{α}-sin2\text{α}}+\frac{cos\text{α}-cos5\text{α}}{sin5\text{α}-sin\text{α}}\), \(a\ne k\frac{\pi}{2};a\ne\frac{\pi}{6}+k\frac{\pi}{3}\).Rút gọn biểu thức A. Từ đó tìm các giá trị của α để A=2

Bài 8:Trong mặt phẳng Oxy cho điểm A(1;0) và đường tròn (C):\(x^2+y^2-2x+4y-5=0\).

a)Xét vị trí của điểm A đối với đường tròn (C)

b)Gọi d là đường thẳng cắt đường tròn (C) tại hai điễm B, C sao cho tam giác ABC vuông cân tại A, viết phường trình đường thẳng d.

Bài 9: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(7;2), B(0;-4), C(3;0).

a)Viết phương trình đường thẳng BC.

b)Viết phường trình đường tròn (T) tâm A và tiếp xúc với BC.

c)Tìm điềm M trên đường tròn (T) sao cho \(MB^2-MC^2=53\)

Bài 10: Cho a, b, c là độ dài ba cạnh của một tam giác có diện tích bằng \(\sqrt{3}\). Chứng minh rằng

\(\frac{a^4+b^4}{a^6+b^6}+\frac{b^4+c^4}{b^6+c^6}+\frac{c^4+a^4}{c^6+c^4}\le\frac{3}{4}\)

7
8 tháng 6 2020

Cảm ơn bạn nhiều nhahihi

NV
7 tháng 6 2020

Câu 2:

Bạn tham khảo ở đây:

Câu hỏi của Linh Chi - Toán lớp 10 | Học trực tuyến

Câu 1:

Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=3\)

\(\Rightarrow\) Đường kính đường tròn bằng 6

Do d cắt đường tròn theo dây cung có độ dài bằng 6 \(\Leftrightarrow\) d đi qua tâm I

Mà d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học