Event Lac Dit My Den Dong Tinh
Nhan nhip My den da den giam gia soc 95% 
co su gop mat cua kevin durant lebron james va ishowspeed va ronaldo
Chuc cac ban hoc tot cung My den
YEU CAU: DA DEN, CHIM TO (MCK + 6)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ai giúp mình giải 10 bài này với. Mình cảm ơn m.n rất nhiều (Giải chi tiết dễ hiểu , vì đây là bài tự luận )

Bài 1: Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng d biết d vuông góc với đường thẳng △: \(2x-y+1=0\)và cắt đường tròn (C): \(x^2+y^2+2x-4y-4=0\) theo một dây cung có độ dài bằng 6.

Bài 2: Giải phương trình: \(x+4-\sqrt{14x-1}=\frac{\sqrt{10x-9-1}}{x}\)

Bài 3:

a) Cho\(sinx=\frac{3}{5}\left(\frac{\pi}{2}< x< \pi\right)\). Tính \(sin2x\), \(cotx\),\(tan\left(x-\frac{\pi}{4}\right)\)

b)Chứng minh rằng: \(sin^6x+cox^6x=\frac{5}{8}+\frac{3}{8}cos4x\)

c)Cho tam giác ABC có các góc A, B, C thòa mãn hệ thức:

\(sinA+sinB+sinC=sin2A+sin2B+sin2C\)

Chứng minh tam giác ABC là tam giác đều.

Bài 4: Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm M(1;3), N(-1;2) và đường thẳng d: \(3x-4y-6=0\)

a)Viết phương trình đường thẳng đi qua hai điểm M, N.

b)Viết phường trình đường tròn tâm M và tiếp xúc với đường thằng d

c)Cho đường tròn(C) có phương trình: \(x^2+y^2-6x-4y-3=0\) .Viết phương trình đường thẳng d' qua M cắt đường tròn (C) tại hai điểm AB có độ dài nhỏ nhất.

Bài 5: Rút gọn biểu thức \(A=\frac{sinx+sin2x+sin3x}{cosx+cos2+cos3x}\)

Bài 6:Trong mặt phương với hệ tọa độ Oxy cho tam giác ABC cân tại C, phương trình đường thẳng chứa cạnh AB là \(x+y-2=0\) .Biết tam giác ABC có trọng tâm \(G\left(\frac{14}{3};\frac{5}{3}\right)\)và diện tích bằng \(\frac{65}{2}\). Viết phương trình đường tròn ngoại tiếp tam giác ABC.

Bài 7: Cho biểu thức \(A=\frac{cos2\alpha-cos4\text{α}}{sin4\text{α}-sin2\text{α}}+\frac{cos\text{α}-cos5\text{α}}{sin5\text{α}-sin\text{α}}\), \(a\ne k\frac{\pi}{2};a\ne\frac{\pi}{6}+k\frac{\pi}{3}\).Rút gọn biểu thức A. Từ đó tìm các giá trị của α để A=2

Bài 8:Trong mặt phẳng Oxy cho điểm A(1;0) và đường tròn (C):\(x^2+y^2-2x+4y-5=0\).

a)Xét vị trí của điểm A đối với đường tròn (C)

b)Gọi d là đường thẳng cắt đường tròn (C) tại hai điễm B, C sao cho tam giác ABC vuông cân tại A, viết phường trình đường thẳng d.

Bài 9: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(7;2), B(0;-4), C(3;0).

a)Viết phương trình đường thẳng BC.

b)Viết phường trình đường tròn (T) tâm A và tiếp xúc với BC.

c)Tìm điềm M trên đường tròn (T) sao cho \(MB^2-MC^2=53\)

Bài 10: Cho a, b, c là độ dài ba cạnh của một tam giác có diện tích bằng \(\sqrt{3}\). Chứng minh rằng

\(\frac{a^4+b^4}{a^6+b^6}+\frac{b^4+c^4}{b^6+c^6}+\frac{c^4+a^4}{c^6+c^4}\le\frac{3}{4}\)

7
8 tháng 6 2020

Cảm ơn bạn nhiều nhahihi

NV
7 tháng 6 2020

Câu 2:

Bạn tham khảo ở đây:

Câu hỏi của Linh Chi - Toán lớp 10 | Học trực tuyến

Câu 1:

Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=3\)

\(\Rightarrow\) Đường kính đường tròn bằng 6

Do d cắt đường tròn theo dây cung có độ dài bằng 6 \(\Leftrightarrow\) d đi qua tâm I

Mà d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)

Bài 2:

a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)

Phương trình (C) là:

(x+2)^2+(y-1)^2=2^2=4

Bài 1:

a: I thuộc Δ nên I(x;-2x-3)

IA=IB

=>IA^2=IB^2

=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)

=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49

=>26x+41=32x+53

=>-6x=-12

=>x=2

=>I(2;-7): R=IA=căn 113

Phương trình (C) là:

(x-2)^2+(y+7)^2=113

2: vecto IA=(7;-8)

Phương trình tiếp tuyến là:

7(x+5)+(-8)(y-1)=0

=>7x+35-8y+8=0

=>7x-8y+43=0

 

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{5}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)

Giao điểm của d và (C) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm

b, Gọi H là trung điểm AB.

Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)

Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)

\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)

Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)

\(\Rightarrow\widehat{HBI}=30^o\)

Khi đó: 

\(IH=d\left(I;\Delta\right)\)

\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)

\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)

\(\Leftrightarrow m=5\pm5\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)

NV
14 tháng 4 2022

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0