Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)
Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)
\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a=2b\)
\(\Rightarrow\Delta:2x+y-5=0\)
b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+4\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)
Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;2} \right)\). Đường thẳng \(d\) đi qua điểm \(M\left( {0;2} \right)\) nhận \(\overrightarrow {IM} = \left( {1;0} \right)\) làm vecto pháp tuyến có phương trình là \(x = 0\).
1.
Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)
\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:
\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)
\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
a) Thay điểm \(M(4;6)\)vào phương trình đường tròn \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
ta có:
\({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\)
Suy ra, điểm M thuộc đường tròn (C)
b) Đường tròn có tâm \(I(1;2)\)
Phương trình tiếp tuyến d của (C) tại \(M(4;6)\) là:
\(\begin{array}{l}\left( {1 - 4} \right)\left( {x - 4} \right) + \left( {2 - 6} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y -36 = 0\end{array}\)
c) Tiếp tuyến của đường tròn song song với đường thẳng \(4x + 3y + 2022 = 0\) nên phương trình có dạng \(d:4x + 3y + c = 0\)
Ta có tâm và bán kính của đường tròn là: \(I(1;2),r = \sqrt {{1^2} + {2^2} + 20} = 5\)
Khoảng cách từ tâm đến tiếp tuyến là bán kính nên: \(d\left( {I,d} \right) = \frac{{\left| {4.1 + 3.2 + c} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 \Rightarrow \left[ \begin{array}{l}c = 15\\c = - 35\end{array} \right.\)
Vậy đường tròn (C) có hai tiếp tuyến song song với đường thẳng \(4x + 3y + 2022 = 0\) là \({d_1}:4x + 3y + 15 = 0,{d_2}:4x + 3y - 35 = 0\)
(C): x^2-2x+1+y^2+4y+4=9
=>(x-1)^2+(y+2)^2=9
=>I(1;-2); R=3
Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9
=>A nằm ngoài (C)
Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)
Thay x=1 và y=5 vào (d), ta được:
a+b=5
=>b=5-a
=>y=ax+5-a
=>ax-y-a+5=0
Theo đề, ta có: d(I;(d))=3
=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)
=>9a^2+9=(a+2-a+5)^2
=>9a^2+9=49
=>9a^2=40
=>a^2=40/9
=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)
=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)
Đáp án: A
Ta có:
(C): x 2 + y 2 + 2x + 2y - 2 = 0 ⇔ (x + 1 ) 2 + (y + 1 ) 2 = 4 ⇒ I(-1;-1)
Phương trình tiếp tuyến của đường tròn tại M là đường thẳng đi qua M và nhận vector IM = (0;2) làm vecto pháp tuyến: 0.(x + 1) + 2.(y - 1) = 0 ⇔ y - 1 = 0