K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

a, Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà (d) luôn đi qua

\(\Leftrightarrow y_0=mx_0+m-1\\ \Leftrightarrow m\left(x_0+1\right)-\left(y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\\ \Leftrightarrow A\left(-1;-1\right)\)

Vậy \(A\left(-1;-1\right)\) là điểm cố định mà (d) luôn đi qua

b, PT giao điểm của (d) và Ox là \(y=0\Leftrightarrow mx=1-m\Leftrightarrow x=\dfrac{1-m}{m}\)

\(\Leftrightarrow B\left(\dfrac{1-m}{m};0\right)\Leftrightarrow OB=\left|\dfrac{1-m}{m}\right|\)

PT giao điểm của (d) và Oy là \(x=0\Leftrightarrow y=m-1\Leftrightarrow C\left(0;m-1\right)\Leftrightarrow OC=\left|m-1\right|\)

Ta có tam giác tạo thành từ (d) với Ox,Oy là OCD

Và \(S_{OCD}=2\Leftrightarrow\dfrac{1}{2}OB\cdot OC=2\Leftrightarrow\left|\dfrac{1-m}{m}\left(m-1\right)\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(m-1\right)^2}{-m}=2\\\dfrac{\left(m-1\right)^2}{-m}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(m-1\right)^2=-2m\\\left(m-1\right)^2=2m\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+1=0\left(vô.lí\right)\\m^2-4m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

Vậy \(m=2\pm\sqrt{3}\) thỏa mãn đề bài

7 tháng 11 2017

Bài 3 làm sao v ạ?

23 tháng 9 2023

a) \(\left(d\right):y=\left(m-2\right)x+m+3\)

Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :

\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)

\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)

\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)

\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)

b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)

Tọa độ điểm \(A\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)

\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)

Tọa độ điểm \(B\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)

\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)

\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)

\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)

\(TH1:2-m>0\Leftrightarrow m< 2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)

\(\Leftrightarrow m^2+6m+9=8-4m\)

\(\Leftrightarrow m^2+10m+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)

\(TH2:2-m< 0\Leftrightarrow m>2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)

\(\Leftrightarrow m^2+6m+9=4m-8\)

\(\Leftrightarrow m^2+2m+17=0\)

\(\Leftrightarrow\) Phương trình vô nghiệm

Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài

25 tháng 1 2022

1, Ta có : y = mx - 2m - 1 

<=> m ( x - 2 ) - 1 - y = 0 

<=> m(x - 2) - (y+1) = 0

Dấu ''='' xảy ra khi x = 2 ; y = -1 

Vậy (d) luôn đi qua A(2;-1) 

2, (d) : y = mx - 2m - 1

Cho x = 0 => y = -2m - 1 

=> d cắt Oy tại A(0;-2m-1) 

=> OA = \(\left|-2m-1\right|\)

Cho y = 0 => x = \(\dfrac{2m+1}{m}\)

=> d cắt trục Ox tại B(2m+1/m;0) 

=> OB = \(\left|\dfrac{2m+1}{m}\right|\)

Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)

\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)

<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)

 

 

25 tháng 1 2022

cảm ơn anh nhiều, 2 bài rồi anh vẫn giúp em

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

Bài 1: Cho hàm số y=[ m-2]x + 3a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoànhb. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]a] Tìm hệ số góc của đường thẳng ABb] Chứng tỏ rằng ba điểm A,B,C thẳng...
Đọc tiếp

Bài 1: Cho hàm số y=[ m-2]x + 3

a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2

Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoành

b. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4

Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]

a] Tìm hệ số góc của đường thẳng AB

b] Chứng tỏ rằng ba điểm A,B,C thẳng hàng 

Bài 3: Cho hàm số y= mx- 2m - 1

a] Định m để đồ thị hàm số đi qua gốc tạo độ O \

b] Gọi A,B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Định m để diện tích tam giác OAB bằng [ đvdt]

c] Chứng minh rằng với mọi giá trị của m thì đồ thị của hàm số đã cho luôn đi qua một điểm cố định 

0