Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dăm ba cái bài này . Ui người ta nói nó dễ !!!
a ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)
b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0
=> điểm A( 2 ; 0 )
Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m
<=> 0 = 2m - 2 +m
<=> 0 + 2 = 2m + m
<=> 2 = 3m
<=> m = 2/3
c )
Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 )
Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)
=> \(B\left(0;\sqrt{2}\right)\)
Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)
\(\Rightarrow m=\sqrt{2}\)
a/ Ta có
^AIB=90 (góc nt chắn nửa đường tròn) => BI vuông góc AE
d vuông góc với AB tại M
=> M và I cùng nhìn BE dưới 1 góc 90 => M; I cùng nằm trên đường tròn đường kính BE => MBEI là tứ giác nội tiếp
b/ Xét tam giác vuông MEA và tam giác vuông IEH có ^AEM chung => tg MEA đồng dạng với tg IEH
d/ Xét tg ABE có
BI vuông góc AE
ME vuông góc AB
=> H là trực tâm cuat tg ABE
Ta có ^AKB =90 (góc nt chắn nửa đường tròn => AK vuông góc với BE
=> AK đi qua H (trong tam giác 3 đường cao đồng quy
=> Khi E thay đổi HK luôn đi qua A cố định
O A B M C D E K I H
Cô hướng dẫn nhé :)
a. Ta thấy góc MBE = góc BIE = 90 độ nên từ giác MBEI nội tiếp đường tròn đường kính BE, vậy tâm là trung điểm BE.
b. \(\Delta IEH\sim\Delta MEA\left(g-g\right)\) vì có góc EIH = góc EMA = 90 độ và góc E chung.
c. Từ câu b ta có : \(\frac{IE}{EM}=\frac{EH}{EA}\Rightarrow EH.EM=IE.EA\) Vậy ta cần chứng minh \(EC.ED=IE.EA\)
Điều này suy ra được từ việc chứng minh \(\Delta IED\sim\Delta CEA\left(g-g\right)\)
Hai tam giác trên có góc E chung. góc DIE = góc ACE (Tứ giác AIDC nội tiếp nên góc ngoài bằng góc tại đỉnh đối diện)
d. Xét tam giác ABE, ta thấy do I thuộc đường trong nên góc AIB = 90 độ. Vậy EM và BI là các đường cao, hay H là trực tâm của tam giác ABE. Ta thấy AK vuông góc BE, AH vuông góc BE, từ đó suy ra A, H ,K thẳng hàng. Vậy khi E thay đổi HK luôn đi qua A.
Tự mình trình bày để hiểu hơn nhé . Chúc em học tốt ^^