\(-\frac{2}{3}x+\frac{5}{3}\).Tìm toạ độ điểm M...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Gọi \(M\left(x;-\frac{2}{3}x+\frac{5}{3}\right)\) thuộc (d).

Ta có \(O\left(0;0\right)\). Vậy \(OM^2=x^2+\left(\frac{5}{3}-\frac{2}{3}x\right)^2=\frac{13}{9}x^2-\frac{20}{9}x+\frac{25}{9}=\frac{13}{9}\left(x-\frac{10}{13}\right)^2+\frac{25}{13}\ge\frac{25}{13}\)

Suy ra \(OM\ge\frac{5}{\sqrt{13}}\). Đẳng thức xảy ra khi \(x=\frac{10}{13}\)

Vậy \(M\left(\frac{10}{13};\frac{15}{13}\right)\) thì khoảng cách OM ngắn nhất.

4 tháng 1 2017

Điểm M có thuộc (d) hay không?

14 tháng 12 2021
7777777777777777777777777777777lpll. 
  
  

a:Thay x=-2 và y=0 vào (d), ta được:

-2(m-1)+4=0

=>-2(m-1)=-4

=>m-1=2

=>m=3

b: (d): y=2x+4

loading...

AH
Akai Haruma
Giáo viên
13 tháng 6 2021

Bạn tham khảo tại link sau:

https://hoc24.vn/cau-hoi/cho-d-2m-1xm-2y2tim-m-de-d-cach-goc-toa-do-1-khoang-lon-nhat.1037394248187

15 tháng 9 2019

a) Hàm số nghịch biến trên R <=> a < 0 

                                                <=> 2m - 1 < 0

                                                <=> 2m      < 1 

                                                <=>  m        < 1/2 

b) Gọi điểm bị cắt là A ( x;y )

cắt trục hoành tại điểm có tọa độ -1 

=> x = -1 ; y = 0 

=> A ( -1 ; 0 ) 

Ta có y = ( 2m - 1)x + m - 1 cắt A ( -1;0 ) 

=> 0 = ( 2m -1 ). ( -1 ) + m - 1

<=> -2m + 1 + m - 1 =0

<=>  -m = 0

<=>  m = 0 

Vậy khi m = 0 thì đồ thị của hàm số cắt trục hoành tại điểm có hoành độ -1 

c) y x 0 1 4 M ( 1;4 ) y=(2m............ -1 E F H

Vì đồ thị của hàm số ( đtchs ) đi qua M(1;4) nên thay điểm M vào đtchs ta được:

         4 = ( 2m - 1).1+m - 1 

<=>  4 =   2m - 1 + m - 1

<=>  4 =     3m - 2

<=>  6 = 3m

<=>  m = 2  ( 1 ) 

Gọi \(E\left(x_E;y_E\right)\)là điểm nằm trên trục tung vào được đtchs đi qua

Và ta có \(x_E=0\) ( vì xE trùng với góc tọa độ )   ( 2 ) 

Thay ( 1 ) và ( 2 ) vào đtchs ta được: 

y = ( 2 . 2 - 1 ). 0 + 2 - 1 

y =     2 - 1

y =       1

Áp dụng hệ thức lượng vào tam giác OEF vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OE^2}+\frac{1}{OF^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{1^2}+\frac{1}{\left(-1\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=2\)

\(\Leftrightarrow2OH^2=1\)

\(\Leftrightarrow OH^2=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}OH=\frac{\sqrt{2}}{2}\left(nhận\right)\\OH=-\frac{\sqrt{2}}{2}\left(loại\right)\end{cases}}\)  ( loại -v2/2 vì độ dài không có giá trị âm )

Vậy khoảng cách từ gốc tọa độ O đến đường thẳng đó là \(\frac{\sqrt{2}}{2}\) 

HỌC TỐT  !!!! 

25 tháng 12 2015

GTLN của y là 3 khi x = 2. Khi đó khoảng cách đến gốc tọa độ là \(\sqrt{2^2+3^2}=\sqrt{13}\Rightarrow a=13\)

29 tháng 2 2020

\(1,y=\left(m-2\right)x+3+1\)      \(\left(d\right)\)

\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)

\(\Rightarrow-1=m-2+m+1\)

\(\Rightarrow m=0\)

\(2,y=1-3x\left(d'\right)\)

Để: \(\left(d\right)//\left(d'\right)\)

\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)

\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)

\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)

Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)

Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)

Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)

Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)

Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\) 

\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)

\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)

\(\Leftrightarrow m=\frac{2}{3}\)

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)