K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3 2023

Ta có \(\widehat{EDF}=\widehat{ECF}\) (chắn hai cung bằng nhau AI và BI của đường tròn (O))

\(\Rightarrow\) Tứ giác CDEF nội tiếp

\(\Rightarrow\widehat{DEF}+\widehat{DCF}=180^0\)

Mà \(\widehat{DCF}+\widehat{DAB}=180^0\) (tứ giác ABCD nội tiếp)

\(\Rightarrow\widehat{DEF}=\widehat{DAB}\)

\(\Rightarrow EF||AB\) (hai góc đồng vị bằng nhau)

11 tháng 4 2017

Ta có \(\widehat{MSE}\) = (1)

( vì \(\widehat{MSE}\) là góc có đỉnh S ở trong đường tròn (O))

\(\widehat{CME}\) = = (2)

(\(\widehat{CME}\) là góc tạo bởi tiếp tuyến và dây cung).

Theo giả thiết = (3)

Từ (1), (2), (3) ta có: \(\widehat{MSE}\)= \(\widehat{CME}\)từ đó \(\Delta\)ESM là tam giác cân và ES = EM

11 tháng 4 2017

Ta có = (1)

( vì là góc có đỉnh S ở trong đường tròn (O))

= = (2)

( là góc tạo bởi tiếp tuyến và dây cung).

Theo giả thiết = (3)

Từ (1), (2), (3) ta có: = từ đó ∆ESM là tam giác cân và ES = EM

11 tháng 4 2021

Bạn ơi nếu đề cũng như vậy nhưng họ bắt mình chứng minh tứ giác OMDS nội tiếp thì phải làm sao ạ ? 

 

3 tháng 12 2018

+  M S E ^ là góc có đỉnh S ở trong đường tròn (O)

+  E S M ^ là góc tạo bởi tiếp tuyến ME và đây MC

⇒ E M S ^ = 1 2 . s đ M C ⏜ = 1 2 . s đ   M B ⏜ +   s đ   B C ⏜