Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/4=3/5
=>AN=2,4cm
a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)
\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm
b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)
\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm
Áp dụng định lý phân giác:
\(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{2}{3}\Rightarrow3BD=2CD=2\left(BC-BD\right)\)
\(\Leftrightarrow5BD=2BC\Rightarrow BD=\dfrac{2}{5}BC\Rightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)
\(AE=\dfrac{3}{5}AD=\dfrac{3}{5}\left(AE+DE\right)\Rightarrow2AE=3DE\Rightarrow\dfrac{DE}{AE}=\dfrac{2}{3}\)
Qua D kẻ đường thẳng song song AC cắt AE tại F
Áp dụng định lý Talet:
\(\dfrac{FD}{AK}=\dfrac{FE}{KE}=\dfrac{DE}{AE}=\dfrac{2}{3}\)
Talet cho tam giác BCK: \(\dfrac{FD}{CK}=\dfrac{BD}{BC}=\dfrac{2}{5}\)
\(\Rightarrow\left(\dfrac{FD}{AK}\right):\left(\dfrac{FD}{CK}\right)=\left(\dfrac{2}{3}\right):\left(\dfrac{2}{5}\right)\Leftrightarrow\dfrac{CK}{AK}=\dfrac{5}{3}\)
\(\Rightarrow\dfrac{CK}{AC-CK}=\dfrac{5}{3}\Rightarrow3CK=5\left(24-CK\right)\Rightarrow CK=15\)
\(AK=AC-CK=9\)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b:
Sửa đề: AN=2cm
MN//BC
=>MN/BC=AN/AC
=>MN/10=2/8=1/4
=>MN=2,5cm
c AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm; DC=40/7cm
a: AB=BC*cosABC=20(cm)
b: AH=20*20căn 3/40=10*căn 3(cm)
HK=AH*sinKAH=10*căn3*sin60=15(cm)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{6}{4.5}=\dfrac{8}{BD}\)
\(\Leftrightarrow BD=\dfrac{8\cdot4.5}{6}=\dfrac{36}{6}=6\left(cm\right)\)
Vậy:BD=6cm
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{8}{BD}=\dfrac{6}{CD}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{8}{BD}=\dfrac{6}{CD}=\dfrac{8+6}{BD+CD}=\dfrac{14}{BD}=\dfrac{14}{7}=2\)
Do đó:
\(\dfrac{6}{CD}=2\)
hay CD=3(cm)
Vậy: CD=3cm
Ta có : \(\dfrac{AB}{AC}=\dfrac{1}{4}\Rightarrow\dfrac{AB}{60}=\dfrac{1}{4}\Rightarrow AB=\dfrac{60}{4}=15\)