Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gọi P là chân đường cao hạ từ A xuống BC
Trên nửa mf bờ AF có chứa B vẽ tia Fx//AE .Trên Fx lấy Q (Q là giao của AP và Fx)
Kéo dài AB cắt EQ tại S
Ta có : \(\widehat{SQA}=\widehat{EQA}\) (FQ//AE)
\(\Rightarrow\widehat{SQA}+\widehat{QAS}=\widehat{EAQ}+\widehat{QAS}=90\)
Ta có : \(\widehat{SQA}+\widehat{QAS}+\widehat{ASQ}=180\)
\(\Rightarrow\widehat{ASQ=90^0\widehat{\Rightarrow SFA}+\widehat{FAS}=80^o}\)
Mà : \(\widehat{BAC}+\widehat{FAS}=90^o\)
=> SFA = BAC
Tương tự CM FAQ = ACB (cùng phụ PAC)
Và AF = AC
=> Tam giác AFQ = CAB
FQ = AB = AE
Chứng minh tương tự MAE = MQF (c.g.c)
=> FM = FE
> FB = EC
1.
Câu 1:
a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$
Tương tự: $BD\parallel CH$
Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành
b)
Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
Ta có:
$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$
$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$
$\Rightarrow BO=CO(1)$
$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$
Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)
$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$
Mặt khác:
$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$
Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.
$\Rightarrow OK=\frac{AH}{2}=3$ (cm)