K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

19 tháng 1 2022

a) Ta có:    \(\widehat{AMD}=\widehat{AMC}+\widehat{CMD}\)

                             \(=60^0+\widehat{CMD}\)             \(\left(1\right)\)

Lại có:       \(\widehat{CMB}=\widehat{BMD}+\widehat{CAD}\)

                             \(=60^0+\widehat{CMD}\)             \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\):   ⇒    \(\widehat{AMD}=\widehat{CMB}\)

Xét △ AMD và △ CMB có:

   CH = AM ( △ AMC đều )

   \(\widehat{AMD}=\widehat{CMB}\)    ( cmt )

   MB = MD ( △ BMD đều )

⇒ △ AMD = △ CMB     ( c - g - c )

Do đó:  AD = CB  ( 2 cạnh tương ứng )

b) Ta có:   \(CK=\dfrac{BC}{2}\)   ( K là trung điểm CB )

    Ta có:   \(AI=\dfrac{AD}{2}\)    ( I là trung điểm AD )

Mà    BC = AD ( cmt )          ⇒    CK = AI
Xét △ AMI và △ CMK có:

   CM = AM ( △ AMC đều )

   \(\widehat{IAM}=\widehat{KCM}\)  ( vì △ AMD = △ CMB )

   AI = CK ( cmt )

⇒ △ AMI = △ CMK   ( c - g - c )

⇒ MK = MI

⇒ △ IMK cân tại M

   

 

25 tháng 7 2016

đều gi?

9 tháng 8 2018

Em tham khảo tại đây nhé:

Câu hỏi của Phạm Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath

9 tháng 8 2018

a) Do AMC và BMD là các tam giác đều nên \(\widehat{AMC}=\widehat{BMD}=60^o\)

\(\Rightarrow\widehat{AMD}=\widehat{CMB}\)

Xét tam giác AMD và tam giác CMB có:

AM = CM

MD = MB

\(\widehat{AMD}=\widehat{CMB}\)

\(\Rightarrow\Delta AMD=\Delta CMB\left(c-g-c\right)\)

\(\Rightarrow AD=BC\)

b) Do \(\Delta AMD=\Delta CMB\Rightarrow\widehat{EAM}=\widehat{FCM}\)

Xét tam giác AEM và tam giác CFM có:

\(\widehat{EAM}=\widehat{FCM}\)

AE = CF (Cùng bằng một nửa AD)

AM = CM

\(\Rightarrow\Delta AEM=\Delta CFM\left(c-g-c\right)\)

\(\Rightarrow ME=MF\)

Ta cũng có ngay \(\Delta EDM=\Delta FBM\left(c-g-c\right)\)

\(\Rightarrow\widehat{EMD}=\widehat{FMB}\)

\(\Rightarrow\widehat{EMF}=\widehat{EMD}+\widehat{DMF}=\widehat{FMB}+\widehat{DMF}=\widehat{DMB}=60^o\)

Xét tam giác MEF có ME = MF nên nó là tam giác cân. Lại có \(\widehat{EMF}=60^o\) nên tam giác MEF là tam giác đều.

9 tháng 8 2018

A B C M D F E

a) Dễ thấy: ^CMD = 1800 - (^AMC + ^BMD) = 600

Ta có: ^CMB = ^CMD + ^BMD = 1200; ^AMD = ^CMD + ^AMC = 1200

=> ^CMB = ^AMD. 

Xét \(\Delta\)MCB và \(\Delta\)MAD có: MC=MA; ^CMB = ^AMD; MB=MD => \(\Delta\)MCB = \(\Delta\)MAD (c.g.c)

=> BC = AD (2 cạnh tương ứng) (đpcm).

b)  BC=AD (cmt) => 1/2.BC=1/2.AD => CF=AE

\(\Delta\)MCB = \(\Delta\)MAD (cmt) => ^MCB = ^MAD hay ^MCF = ^MAE

Xét \(\Delta\)MFC và \(\Delta\)MEA có: CF=AE; ^MCF= ^MAE; MC=MA => \(\Delta\)MFC = \(\Delta\)MEA (c.g.c)

=> MF = ME (2 cạnh tương ứng) (1)

Đồng thời ^CMF = ^AME (2 góc tương ứng). Mà ^AME + ^CME = 600

=> ^CMF + ^CME = 600 => ^EMF = 600 (2)

Tù (1) và (2) => \(\Delta\)MEF đều (đpcm).