Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(MI\text{//}AC;DH\bot MN\left(H\in MN\right);IK\bot MN\left(K\in MN\right)\)
\(DHKI\) là hcn \(\Rightarrow DH=IK\Rightarrow S_{DMN}=S_{IMN}\)
Ta có \(\left\{{}\begin{matrix}\Delta AMN\sim\Delta ABC\\\Delta BMI\sim\Delta ABC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2\\\dfrac{S_{BMI}}{S_{ABC}}=\left(\dfrac{BM}{AB}\right)^2\end{matrix}\right.\)
\(\Rightarrow\dfrac{S_{AMN}+S_{BMI}}{S_{AB}}=\dfrac{AM^2+BM^2}{AB^2}\ge\dfrac{\dfrac{1}{2}\left(AM+MB\right)^2}{AB^2}\)
\(\Rightarrow\dfrac{S_{ABC}-S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\\ \Rightarrow1-\dfrac{S_{MNCI}}{S_{ABC}}\ge\dfrac{1}{2}\Rightarrow\dfrac{S_{MNCI}}{S_{ABC}}\le\dfrac{1}{2}\\ \Rightarrow S_{MNCI}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow2\cdot S_{DMN}\le\dfrac{1}{2}S_{ABC}\\ \Rightarrow S_{DMN}\le\dfrac{1}{4}S_{ABC}\)
Dấu \("="\Leftrightarrow AM=MB\Leftrightarrow M\) là trung điểm \(AB\Leftrightarrow N\) là trung điểm AC
Khi đó d đi qua trung điểm AB và AC
Giả sử BM = x; MC = 1. Khi đó ta có \(\Delta BEM\sim\Delta MDC\) theo tỉ lệ x. Vậy \(x^2=\frac{S_1}{S_2}=\frac{103}{145}\Rightarrow x=\sqrt{\frac{103}{145}}\)
Lại có \(\Delta BEM\sim\Delta BAC\) theo tỉ lệ \(\frac{x}{x+1}\) nên \(\frac{S_1}{S_{ABC}}=\left(\frac{x}{x+1}\right)^2\Rightarrow S_{ABC}=\frac{103}{\left(\frac{x}{x+1}\right)^2}\approx492,42\left(cm^2\right).\)