Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này chưa có ai trả lời hả ? ai có câu trả lời ko giúp mik vs ạ mik cần rất gấp cảm ơn m.n
Cô hướng dẫn nhé :)
a. Tứ giác AOBM nội tiếp đường tròn đường kính OM. Tứ giác AHIM nội tiếp đường tròn đường kính AM.
b. Ta thấy góc NAM = góc AQN (Cùng chắn góc AN)
Vậy \(\Delta AMN\sim\Delta QMA\left(g-g\right)\)
Từ đó \(\frac{AM}{QM}=\frac{MN}{AM}\Rightarrow AM^2=MN.QM\)
c. Ta thấy NA = NB nên góc NAB = góc NBA. Lại có góc NAB = góc MBN (cùng chắn NB) nên BK là phân giác góc ABM. Nếu K là trung điểm AM thì tam giác cân AMB trở thành tam giác đều. Từ đó BK vuông góc AM hay N là trực tâm. Do AI vuông góc BM nên AI đi qua N hay A, N, I thẳng hàng.
Chúc em học tốt :)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
ΔAHO đồng dạng với ΔEIO
=>AH/EI=OH/OI
=>AH*OI=EI*OH(4)
ΔAHO đồng dạng với ΔIDO
=>AH/ID=OA/OI
=>AH*OI=OA*ID
=>OA*ID=EI*OH
=>OC*ID=EI*OH
=>IE/OC=ID/OH
góc HOC+góc AOH=180 độ
góc DIO+góc AOH=90 độ
=>góc OIE+góc DIO+góc AOH=180 độ
=>gosc EID+góc AOH=180 độ
=>góc HOC=góc EID
=>ΔEID đồng dạng với ΔCOH
=>góc IED=góc OCH
mà góc IED=góc AKD
nên góc OCH=góc AKD
=>ΔAKD đồng dạng với ΔACH
=>AK/AC=AD/AH
=>AK*AH=AD*AC=R^2
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI