K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

https://olm.vn/hoi-dap/detail/61999750098.html

Câu hỏi của Hoàng Phúc - Toán lớp 8 - Học toán với OnlineMath

Một cách của a@olm.vn

5 tháng 4 2023

 Xác định M trên AB sao cho MN có độ dài lớn nhất

19 tháng 11 2016

Giải

Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.

Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.

Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.

=> OX + OY = 1/2 AB là đại lượng không đổi

MZ là đường trung bình của hình thang O'YXO

=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB

Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).

Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB

29 tháng 10 2016

A B I O O' M X Y Z

Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.

Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.

Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.

=> OX + OY = 1/2 AB là đại lượng không đổi

MZ là đường trung bình của hình thang O'YXO

=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB

Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).

Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB

30 tháng 10 2016

đáp án là M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB 

23 tháng 4 2018

A B C D E H I O M N K d F G x y Q S

Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M 

Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.

Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD

\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB

=> ^SBF=2. ^BDS .

\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét \(\Delta\)OIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

ΔAEC=ΔABD (c.g.c) => EC=BD

ΔEMC=ΔSMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB

=> ^SBF=2. ^BDS .

ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét ΔOIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

22 tháng 8 2017

 a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60 
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau ) 
mà 2 góc ở đáy lại = 60 => tam giác đều 

b) AOB đều => 3 cạnh bằng nhau => AB = OB 
AB = AM + MB 
OB = OD + DB 
mà AB = OB, MB = DB 
=> AM = OD, mà AM = MC => MC = OD 

MD = OC chứng minh tương tự 

c) Xét tam giác ABD và tam giác BOC: 
AB = BO 
góc ABD = góc BOC = 60 
BD = OC 
=> ABD = BOC ( c.g.c ) 
=> AD = BC 

d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC 
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC 
=> góc BAD = góc MCK 

Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK 

Xét tam giác MAI và tam giác MCK: 
MA = MC 
góc BAD = góc MCK 
AI = CK 
=> MAI = MCK ( c.g.c ) => MI = MK 

e) góc CEA = góc BED (đối đỉnh) 
Xét tam giác BED: BED + EDB + EBD = 180 
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120 
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC ) 
=> EDB + EBD = 120 => BED = 60 => CEA = 60

Đây ko phải đáp án của bài này