K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

a, - Ta có : CA, MA là tiếp tuyến của đường tròn tâm O .

=> \(\left\{{}\begin{matrix}AM\perp MO\\CO\perp CA\end{matrix}\right.\)

- Xét tứ giác ACOM có : \(\widehat{AMO}+\widehat{ACO}=90^o+90^o=180^o\)

=> Tứ giác ACOM nội tiếp đường tròn .

b, - Áp dụng định lý pi - ta - go vào tam giác OBN vuông tại N có :

\(ON^2+NB^2=OB^2\)

- Thay số : \(R^2+BN^2=4R^2\)

=> \(BN=\sqrt{4R^2-R^2}=\sqrt{3R^2}=R\sqrt{3}\left(cm\right)\)

- Áp dụng tỉ số lượng giác vào tam giác OBN vuông tại N có :

\(TanOBN=\frac{ON}{BN}=\frac{R}{R\sqrt{3}}=\frac{1}{\sqrt{3}}\)

=> \(\widehat{OBN}=30^o\)

Mà 2 tiếp tuyến CB, BN cắt nhau tại B .

=> OB là phân giác của góc NBC .

=> \(\widehat{OBN}=\frac{1}{2}\widehat{NBC}\)

=> \(\widehat{NBC}=60^o\)

18 tháng 11 2021

M N C A B O E I F x y

a/ C và M cùng nhìn AO dưới 1 góc vuông => C và M thuộc đường tròn đường kính AO => ACOM là tư giác nội tiếp

b/

Xét tg vuông BON có

\(BN=\sqrt{OB^2-ON^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

\(\sin\widehat{OBN}=\frac{ON}{OB}=\frac{R}{2R}=\frac{1}{2}\Rightarrow\widehat{OBN}=30^o\)

Ta có \(BN=BC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm băng nhau)

Xét tg vuông BOC

\(\sin\widehat{OBC}=\frac{OC}{OB}=\frac{R}{2R}=\frac{1}{2}\Rightarrow\widehat{OBC}=30^o\)

\(\Rightarrow\widehat{NBC}=\widehat{OBN}+\widehat{OBC}=30^o+30^o=60^o\)

c/

Ta có 

E; F là trung điểm của CM và CN (hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm vuông góc và chia đôi dây cung nối 2 tiếp điểm)

=> EF là đường trung bình của \(\Delta MCN\) => EF//MN (1)

Ta có

\(AM\perp MN;BN\perp MN\) => AM//BN \(\Rightarrow\frac{IA}{IN}=\frac{IM}{IB}=\frac{AM}{BN}\) (talet trong tam giác)

Mà \(AM=AC;BN=BC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm băng nhau)

\(\Rightarrow\frac{IA}{IN}=\frac{IM}{IB}=\frac{AC}{BC}\) (2)

Ta có

\(\widehat{MCN}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(CM\perp AO;CN\perp BO\left(cmt\right)\Rightarrow\widehat{MCN}=\widehat{AOB}=90^o\)

\(\Rightarrow CM\perp AO;BO\perp AO\) => CM//BO

Xét \(\Delta ABO\) có CM//BO \(\Rightarrow\frac{EA}{EO}=\frac{AC}{BC}\) (3)

Từ (2) và (3) \(\Rightarrow\frac{EA}{EO}=\frac{IA}{IN}\)

Nối E với I, xét \(\Delta AON\) có \(\frac{EA}{EO}=\frac{IA}{IN}\) => EI//MN (Talet đảo trong tam giác) (4)

Từ (1) và (4) => EF trung EI (Từ 1 điểm ngoài 1 đường thẳng chỉ duy nhất dựng được 1 đường thẳng // với đường thẳng đã cho)

=> E; I; F thẳng hàng

16 tháng 7 2016

Giải nhanh hộ mình

22 tháng 1 2018

a, Học sinh tự chứng minh

b,  N E C ^ = C B E ^ = 1 2 s đ C E ⏜

=> DNEC ~ DNBE (g.g) => ĐPCM

c, DNCH ~ DNMB (g.g)

=> NC.NB = NH.NM = N E 2

DNEH ~ DNME (c.g.c)

=>  N E H ^ = E M N ^

d,  E M N ^ = E O M ^  (Tứ giác NEMO nội tiếp)

=>  N E H ^ = N O E ^ => EH ^ NO

=> DOEF cân tại O có ON là phân giác =>  E O N ^ = N O F ^

=> DNEO = DNFO vậy  N F O ^ = N E O ^ = 90 0 => ĐPCM

24 tháng 1 2022

địt mẹ mày giải như đầu buồi

vt góc với tam giác sai mẹ hết

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em