K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

Đã có đáp án cho bạn rồi đây. Như trước mình đã nói mình sẽ c/m : RC vuông VC tại L.. Những chỗ mình ghi 3 chữ là góc nha. Tại mình không biết ghi. Còn hình bạn tự vẽ nha

                                                                    Giải 

Xét (O) có AB là tiếp tuyến => OB vuông BA hay AB vuông BR

Ta có : tam giác VLC nội tiếp (O) có VC là đkính ( hiển nhiên, theo sgk )

=> tam giác VCL vuông tại L 

=> VL vuông LC hay VA vuông CL tại L ( do L thuộc VA ) ( 1 )

C/m tương tự, ta có : tam giác VBC vuông tại B => VB vuông BC

Gọi K là giao điểm BC và VL; I là giao điểm CL và BA

Ta có :

. BVK = 90 - BKV ( 2 góc phụ nhau )

. LCK = 90 - LKC ( như trên )

. BVK = LKC ( đđ )

=> BVK = LCK

Ta còn có : 

. VBA = VBC + CBA = 90 + CBA

. CBR = RBA + CBA = 90 + CBA

=> VBA = CBR

Xét 2 tam giác VBA và CBR, ta có:

. VBA = CBR ( cmt )

. BVA = BCR ( cmt )

=> tam giác VBA đồng dạng tam giác CBR (gg) ( mình sắp xếp hết rồi, đừng đổi chỗ )

=> VAB = CRB

Ta có :

. IRB + BIR = 90 ( 2 góc phụ nhau )

. IRB = VAB ( cmt )

.BIR = LIA ( đđ )

=> LIA + VAB = 90

=> ILA = 90 ( tổng 3 góc tam giác LIA )

=> IL vuông VA tại L ( V, L, A  thẳng hàng )

hay RL vuông VA tại L ( I thuộc RL )  ( 2 )

Từ (1) và (2) theo tiên đề Ơ-clid, ta có :

R, L, C thẳng hàng (đpcm)

Xong ! Bạn đã hài lòng chưa ? 

13 tháng 12 2017

A C B H F G D E J

a) Do AB là tiếp tuyến của đường tròn tại B nên theo đúng định nghĩa, ta có \(OB\perp BA\Rightarrow\widehat{OBA}=90^o\)

Vậy tam giác ABO vuông tại B.

Xét tam giác vuông OAB, áp dụng định lý Pi-ta-go ta có : 

\(AB=\sqrt{OA^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

b) Ta có BC là dây cung, \(OH\perp BC\) 

Tam giác cân OBC có OH là đường cao nên nó cũng là tia phân giác góc COB.

Xét tam giác OCA và OBA có: 

OC = OB ( = R)

OA chung

\(\widehat{COA}=\widehat{BOA}\) (cmt)

\(\Rightarrow\Delta OCA=\Delta OBA\left(c-g-c\right)\)

\(\Rightarrow\widehat{OCA}=\widehat{OBA}=90^o\). Vậy CA là tiếp tuyến của đường tròn (O) tại C.

c) Ta có BC là dây cung, OH vuông góc BC nên theo tính chất đường kính dây cung ta có H là trung điểm BC.

Xét tam giác vuông OBA có BH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.OA=OB.BA\Rightarrow HB=\frac{R.R\sqrt{3}}{2R}=\frac{R\sqrt{3}}{2}\)

Vậy thì BC = 2HB = \(R\sqrt{3}\)

Do \(\Delta OCA=\Delta OBA\Rightarrow CA=BA\)

Xét tam giác ABC có \(AB=BC=CA=R\sqrt{3}\) nên nó là tam giác đều.

d) Gọi G là trung điểm của CA; J là giao điểm của AE và HD, F' là giao điểm của AE và OB

Ta cần chứng minh F' trùng F.

Dễ thấy HD // OB; HG // AB mà \(AB\perp OB\Rightarrow HD\perp GH\) hay D là tiếp tuyến của đường tròn tại H.

Từ đó ta có : \(\widehat{EHJ}=\widehat{EAJ}\)  

Vậy thì \(\Delta HEJ\sim\Delta AHJ\left(g-g\right)\Rightarrow\frac{EJ}{HJ}=\frac{HJ}{AJ}\Rightarrow HJ^2=EJ.AJ\)

Xét tam giác vuông JDA có DE là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(JD^2=JE.JA\)

Vậy nên HJ = JD.

Áp dụng định lý Ta let trong tam giác OAB ta có:

Do HD // OB nên \(\frac{HJ}{OF'}=\frac{JD}{F'B}\left(=\frac{AJ}{AF'}\right)\)

Mà HJ = JD nên OF' = F'B hay F' là trung điểm OB. Vậy F' trùng F.

Từ đó ta có A, E, F thẳng hàng.

21 tháng 11 2019

dài vậy 😅😅😅

Bạn nào giúp mình bài này với =))1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.a) Tứ giác ACBD là hình gì ? b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng c) Chứng minh HI là tiếp tuyến của...
Đọc tiếp

Bạn nào giúp mình bài này với =))

1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.

a) Tứ giác ACBD là hình gì ? 

b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng 

c) Chứng minh HI là tiếp tuyến của đường trong ( O')

2. Cho tam giác OAO' vuông tại A ( O'A < OA ) . Vẽ hai đường tròn ( O; OA ) và (O' ; O'A ).

a) Chứng minh 2 đường trong (O) và (O') cắt nhau 

b) Gọi B là giao điểm ( khác A ) của 2 đường tròn ( O ) và (O') . Chứng minh đường thẳng OB là tiếp tuyến của đường tròn (O')

c) Gọi I là trung điểm của OO' và C là điểm đối xứng của A qua I . Chứng minh tứ giác OO'BC là hình thang cân .

0
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC(đpcm)

b) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{BOA}=\widehat{COA}\)(3)

Ta có: ΔOCA vuông tại C(CA là tiếp tuyến của (O) có C là tiếp điểm)

nên \(\widehat{CAO}+\widehat{COA}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{EAO}+\widehat{COA}=90^0\)(4)

Từ (3) và (4) suy ra \(\widehat{EAO}+\widehat{BOA}=90^0\)(5)

Vì tia OA nằm giữa hai tia OE và OB

nên \(\widehat{BOA}+\widehat{EOA}=\widehat{BOE}\)

hay \(\widehat{EOA}+\widehat{BOA}=90^0\)(6)

Từ (5) và (6) suy ra \(\widehat{EAO}=\widehat{EOA}\)

Xét ΔOAE có \(\widehat{EAO}=\widehat{EOA}\)(cmt)

nên ΔOAE cân tại E(Định lí đảo của tam giác cân)

19 tháng 11 2022

a: Ta có: ΔOMN cân tại O

mà OH là đường cao

nên H là trung điểm của MN

Ta có: MN là trung trực của OA

nên H là trung điểm của OA

Xét ΔMOA có

MH vừa là đường cao, vừa là trung tuyến

nên ΔMOA cân tại M

mà OM=OA

nen ΔMOA đều

b: Xét (O) có

SM,SN là các tiếp tuyến

nên SM=SN

mà OM=ON

nên OS là trung trực của MN(1)

vì HM=HN

nên H nằm trên đừog trung trực của MN(2)

Từ (1) và (2) suy ra O,H,S thẳng hàng

mà O,H,A thẳng hàng

nên O,A,S thẳng hàng