Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiêp
Tâm là trung điểm của OA
b: Xét tứ giác OHAC có
góc OHA+góc OCA=180 độ
=>OHAC là tứ giác nội tiếp
=>góc CHA=góc AOC
Xét tứ giác OHBA có
góc OHA=góc OBA=90 độ
nên OHBA là tứ giác nội tiếp
=>góc BHA=góc BOA=góc COA=góc CHA
=>HA là phân giác của góc BHC
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
a) tam giác ACB ~ tam giác ADB(g-g)
=>AB^2=AC*AD
còn AB^2=AH*AO thì theo hệ thức lượng
b) tam giác EOH=tam giác BOH( cạnh huyền cạnh góc vg)
=>EH=HB
=>EA=AB
=>tam giác AEO= tam giác ABO
=>OEA=ABO=90
a) Xét tứ giác ABOC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)