\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)và x+y+z≠0

Tính A=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Theo de bai ta co: \(x=\dfrac{y^2}{z}\Rightarrow\dfrac{z}{x}=\dfrac{z^2}{y^2}\left(1\right)\)

Va \(y=\dfrac{z^2}{x}\left(2\right)\)

Tu (1),(2) suy ra y=z \(\Rightarrow x=y=z\)

suy ra A=1

Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\) => A...
Đọc tiếp

Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko

Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)

=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Áp dụng BĐT Cauchy ta có

\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)

\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)

4
10 tháng 12 2017

@Unruly Kid

10 tháng 12 2017

Gọi thêm bác nào vào duyệt đi???

26 tháng 5 2017

\(A=\dfrac{x+y}{z}+1+\dfrac{x+z}{y}+1+\dfrac{y+z}{x}+1-3\)

\(A=\left(x+y+z\right)\left(\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)-3\)

\(A=0-3=-3\)

10 tháng 11 2017

mọi người giúp em vs

23 tháng 7 2018

Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

c: Ta có: 10x=6y

nên x/3=y/5

Đặt x/3=y/5=k

=>x=3k; y=5k

Ta có: \(2x^2-y^2=-28\)

\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

=>x=6; y=10

TRường hợp 2: k=-2

=>x=-6; y=-10

12 tháng 11 2017

đúng rùi đó