\(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng \(\dfrac{ma^2+nb^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{ac}{c^2}\)=\(\dfrac{bd}{d^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{d^2}{c^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)= \(\dfrac{2c^2-ac}{2c^2-bd}\)
=> \(\dfrac{a}{b}\)=\(\dfrac{2c^2-ac}{2c^2-bd}\)=>\(\dfrac{a^2}{b^2}\)=\(\dfrac{2c^2-ac}{2d^2-bd}\)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)= \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)=\(\dfrac{ma+nb}{mc+nd}\)=\(\dfrac{ma-nb}{mc-nd}\)
=> \(\dfrac{ma+nb}{ma-nb}\)=\(\dfrac{mc+nd}{mc-nd}\)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^3}{c^3}\)=\(\dfrac{b^3}{d^3}\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^3\)(2)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^3\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)

2 tháng 8 2016

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

a, ta có 

+) \(\frac{ma+nc}{mb+nd}=\frac{mck+nc}{mdk+nd}=\frac{c\left(mk+n\right)}{d\left(mk+n\right)}=\frac{c}{d}\)

+) \(\frac{pa+qc}{pb+qd}=\frac{pck+qc}{pdk+qd}=\frac{c\left(pk+q\right)}{d\left(pk+q\right)}=\frac{c}{d}\)

Vậy...........

b, Ta có 

+) \(\frac{ma+nd}{mc+nd}=\frac{mck+ndk}{mc+nd}=\frac{k\left(mc+nd\right)}{mc+nd}=k\)

+) \(\frac{pa+qb}{pc+qd}=\frac{pck+pdk}{pc+qd}=\frac{k\left(pc+qd\right)}{pc+qd}=k\)

Vậy.............

c, ta có 

+) \(\frac{ma+nc}{pa+qc}=\frac{mck+nc}{pck+qc}=\frac{c\left(mk+n\right)}{c\left(pk+q\right)}=\frac{mk+n}{pk+q}\)

+) \(\frac{mb+nd}{pb+qd}=\frac{mdk+nd}{pdk+qd}=\frac{d\left(mk+n\right)}{d\left(pk+q\right)}=\frac{mk+n}{pk+q}\)

vậy.........

d, ta có 

+) \(\frac{ma+nb}{pa+qb}=\frac{mck+ndk}{pck+qdk}=\frac{k\left(mc+nd\right)}{k\left(pc+qd\right)}=\frac{mc+nd}{pc+qd}\)

Vậy.........

3 tháng 8 2016

thanks bạn nhìu nha

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{ma+nc}{mb+nd}=\dfrac{mbk+ndk}{mb+nd}=k\)

\(\dfrac{pa+qc}{pb+qd}=\dfrac{pbk+qdk}{pb+qd}=k\)

Do đó: \(\dfrac{ma+nc}{mb+nd}=\dfrac{pa+qc}{pb+qd}\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha

28 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )

Ta đặt:

\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)

Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

11 tháng 12 2022

a; Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

c: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7b^2k^2-3\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2-3k}{11k^2-8}\)

\(\dfrac{7c^2-3cd}{11c^2-8d^2}=\dfrac{7d^2k^2-3kd^2}{11d^2k^2-8d^2}=\dfrac{7k^2-3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2-3cd}{11c^2-8d^2}\)