Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
Ta có: \(\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+x^5y\)
\(=\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^5y\)
= \(\dfrac{3}{4}x^5y\)
Thay x=1 và y=-1 vào đơn thức \(\dfrac{3}{4}x^5y\)ta được: \(\dfrac{3}{4}.1^5.\left(-1\right)\)=\(\dfrac{-3}{4}\)
Hướng dẫn giải:
Đặt A = 1212 x5y - 3434 x5y + x5y
Ta có: A = (1212 - 3434 + 1) x5y
A = 3434 x5y .
Thay x = 1; y = -1 vào A ta được đơn thức: A = 3434 x5y = 3434 15(-1) = - 3434.
Vậy A = - 3434 tại x = 1 và y = -1.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
Ta có: \(E=\dfrac{3x^2+5y^2}{4x^2-y^2}\)
\(=\dfrac{3\cdot\left(2k\right)^2+5\cdot\left(3k\right)^2}{4\cdot\left(2k\right)^2-\left(3k\right)^2}=\dfrac{3\cdot4k^2+5\cdot9k^2}{4\cdot4k^2-9k^2}\)
\(=\dfrac{12k^2+45k^2}{16k^2-9k^2}=\dfrac{57k^2}{7k^2}=\dfrac{57}{7}\)
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
Lời giải:
Ta có:
\(\frac{9^x}{3^{x+y}}=27\Leftrightarrow \frac{3^{2x}}{3^{x+y}}=27\Leftrightarrow 3^{2x-(x+y)}=27\)
\(\Leftrightarrow 3^{x-y}=27\Leftrightarrow x-y=3\) (1)
Và:
\(\frac{4^{x+y}}{2^{5y}}=64\Leftrightarrow \frac{2^{2x+2y}}{2^{5y}}=64\)
\(\Leftrightarrow 2^{2x+2y-5y}=64\Leftrightarrow 2^{2x-3y}=64\Leftrightarrow 2x-3y=6\) (2)
Từ \((1);(2)\Rightarrow x=3;y=0\)
Khi đó: \(P=2xy-|2y-x|+10=0-|-3|+10=7\)