Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Huy Tú chắc làm sai rồi
Chứng minh:
Ta có: \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\left\{{}\begin{matrix}a=b\\c=d\end{matrix}\right.\Rightarrow\dfrac{a}{a}=\dfrac{c}{c}\)
\(\Rightarrow\dfrac{a+a}{a}=\dfrac{c+c}{c}\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) (Đpcm)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\Rightarrow\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\) (1)
Nhân tư và mẫu vế trái (1) với 3 và vế phải với 13 ta được:
\(\dfrac{2a+13b}{2c+13d}=\dfrac{14a+91b}{14c+91d}=\dfrac{39a-91b}{39c-91d}\)
=\(\dfrac{\left(14a+91b\right)+\left(39a-91b\right)}{\left(14c+91d\right)+\left(39c-91d\right)}=\dfrac{53a}{53c}=\dfrac{a}{c}\) (2)
Nhân tử và mẫu vế trái (1) với 3 và vế phải với 2 ta được:
\(\dfrac{2a+13b}{2c+13d}=\dfrac{6a+39b}{6c+39d}=\dfrac{6a-14b}{6c-14d}=\dfrac{53b}{53d}=\dfrac{b}{d}\) (3)
Từ (2) và (3) suy ra :
\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Rightarrow6ac+39bc-14ad-91bd=6ac+39ad-14bc-91bd\)
\(\Rightarrow6ac-6ac+39bc+14bc-14ad-39ad-91bd+91bd=0\)
\(\Rightarrow53bc-53ad=0\)
\(\Rightarrow53bc=53ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm.\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Leftrightarrow\)(2a+13b)(3c-7d)=(2c+13d)(3a-7b)
2a(3c-7d)+13b(3c-7d)=2c(3a-7b)+13d(3a-7b)
6ac-14ad+39bc-91bd=6ac-14bc+39ad+91bd
14ad+39bc+91bd=14bc+39ad+91bd
14ad+39bc=14bc+39ad
39bc=14bc+39ad-14ad
39bc=14bc+25ad
39bc-14bc=25ad
25bc=25ad
bc=ad
Ta có: Điều đề bài cho:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\left(đpcm\right)\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
ĐẶT \(\frac{a}{b}\)= \(\frac{c}{d}\)là k
suy ra a=kb; c=kd
ta có:\(\frac{2a+13b}{3a-7b}\)= \(\frac{2kb+13b}{3kb-7b}\)= \(\frac{b\left(2k+13\right)}{b\left(3k-7b\right)}\)=\(\frac{2k+13}{3k-7}\) (1)
\(\frac{2c+13d}{3c-7d}\)=\(\frac{2kd+13d}{3kd-7d}\)=\(\frac{d\left(2k+13\right)}{d\left(3k-7\right)}\)=\(\frac{2k+13}{3k-7}\) (2)
từ (1) và (2) suy ra \(\frac{2a+13b}{3a-17b}\)=\(\frac{2c+13d}{3c-7d}\)
\(\dfrac{2a+13b}{3a-7b}\)=\(\dfrac{2c+13d}{3c-7d}\)
CMR:\(\dfrac{a}{b}=\dfrac{c}{d}\)
mn giải giúp cốm
Ta có: \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Leftrightarrow\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{d}=\dfrac{a}{c}-\dfrac{b}{d}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
hay \(\dfrac{a}{b}=\dfrac{c}{d}\)
a/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(\dfrac{2a+7b}{3a-4b}=\dfrac{2bk+7b}{3bk-4b}=\dfrac{b\left(2k+7\right)}{b\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\left(1\right)\)
\(\dfrac{2c+7d}{3c-4d}=\dfrac{2dk+7d}{3dk-4d}=\dfrac{d\left(2k+7\right)}{d\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\)\(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
b/ tương tự
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b\left(2k+13\right)}{b\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(1\right)\)
\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(2\right)\)
Từ \(\left(1\right)\) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}\)( đpcm )
Chúc bạn học tốt !!!
Từ \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a}{2c}=\frac{13b}{13d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)
\(\Leftrightarrow-53ad=-53bc\)
=>ad=bc
hay a/b=c/d