\(\frac{ }{ }\)+\(\frac{2}{2^2}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Ai trả lời giúp mik nha

5 tháng 2 2020

BÀI 1:

\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)

\(\Rightarrow DPCM\)

BÀI 2 :

TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)

= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1

ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)

\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)

\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)

\(\Rightarrow A>B\)

25 tháng 6 2016

Cái này dễ lắm nhưng mình ngại viết

25 tháng 6 2016

minh thach  cau lam duoc

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

\(\text{Đặt biểu thức là A:}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)

\(\text{Ta có:}\frac{1}{2^2}=\frac{1}{2\times2}< \frac{1}{1\times2}\)

\(\frac{1}{3^2}=\frac{1}{3\times3}< \frac{1}{2\times3}\)

\(\frac{1}{4^2}=\frac{1}{4\times4}< \frac{1}{3\times4}\)

\(...\)

\(\frac{1}{99^2}=\frac{1}{99\times99}< \frac{1}{98\times99}\)

\(\frac{1}{100^2}=\frac{1}{100\times100}=\frac{1}{99\times100}\)

\(\Rightarrow A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

8 tháng 5 2018

\(2A=\frac{5}{2}+\frac{5}{2^2}+\frac{5}{2^3}+...+\frac{5}{2^{99}}\left(1\right)\)

\(A=\frac{5}{2^2}+\frac{5}{2^3}+\frac{5}{2^4}+...+\frac{5}{2^{100}}\left(2\right)\)

Trừ từng vế của (1) cho (2), ta có được

\(A=\frac{5}{2}-\frac{5}{2^{100}}=\frac{5\cdot\left(2^{99}-1\right)}{2^{100}}>\frac{5\cdot2^{98}}{2^{100}}=\frac{5}{4}>\frac{2}{3}\)