Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}=90^0-\widehat{ACB}=90^0-30^0\)
hay \(\widehat{ABC}=60^0\)
Ta có: ΔAHB vuông tại A(AH⊥BC)
nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-60^0=30^0\)
Ta có: tia AH nằm giữa hai tia AB,AC
nên \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)
hay \(30^0+\widehat{CAH}=90^0\)
\(\Leftrightarrow\widehat{CAH}=60^0\)
Ta có: AD là tia phân giác của \(\widehat{CAH}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{CAH}}{2}=\dfrac{60^0}{2}=30^0\)
Vậy: \(\widehat{ABC}=60^0\); \(\widehat{DAC}=30^0\)
b) Xét ΔADH và ΔADE có
AH=AE(gt)
\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))
AD chung
Do đó: ΔADH=ΔADE(c-g-c)
⇒\(\widehat{AHD}=\widehat{AED}\)(hai góc tương ứng)
mà \(\widehat{AHD}=90^0\)(AH⊥HD)
nên \(\widehat{AED}=90^0\)
hay DE⊥AC(đpcm)
c) Ta có: ΔAHD=ΔAED(cmt)
nên HD=ED(hai cạnh tương ứng)
Xét ΔFHD vuông tại H và ΔCED vuông tại E có
FH=CE(gt)
HD=ED(cmt)
Do đó: ΔFHD=ΔCED(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{FDH}=\widehat{CDE}\)(hai góc tương ứng)
mà \(\widehat{CDE}+\widehat{HDE}=180^0\)(hai góc kề bù)
nên \(\widehat{FDH}+\widehat{EDH}=180^0\)
⇒\(\widehat{FDE}=180^0\)
hay F,D,E thẳng hàng(đpcm)
1.Tự vẽ hình ha!
Cm:
a) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
OA=OC (gt)
OD=OB (gt)
\(\widehat{O}\)chung
=>\(\Delta OAD\)=\(\Delta OCB\)(c.g.c)
=>AD=BC (2 cạnh tương ứng) (Đpcm)
b) Vì\(\Delta OAD\)=\(\Delta OCB\)(cmt) => \(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)(2 góc t/ứ)
Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{DAB}=180^0-\widehat{OAD}\)
Lại có: \(\widehat{OCB}+\widehat{BCD}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{BCD}=180^0-\widehat{OCB}\)
Mà \(\widehat{OAD}=\widehat{OCB}\)(cmt)
\(\Rightarrow\widehat{DAB}=\widehat{BCD}\)hay \(\widehat{IAB}=\widehat{ICD}\)
Ta có: OA=OC;OB=OD (GT)
=> OB-OA=OD-OC
=>AB=CD
Xét\(\Delta AIB\) và\(\Delta CID\)có:
AB=CD (cmt)
\(\widehat{IAB}=\widehat{ICD}\)(cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta AIB\)=\(\Delta CID\)(g.c.g)
=>AI=IC; IB=ID (đpcm)
c) Xét \(\Delta OID\)và\(\Delta OIB\)có:
OD=OB (gt)
ID=IB (cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta OID\)=\(\Delta OIB\)(c.g.c)
=>\(\widehat{DOI}=\widehat{BOI}\)
=> OI là tia pg của góc xOy (đpcm)
Bài 1:
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ACB}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABD}+30^0=90^0\)
hay \(\widehat{ABD}=60^0\)
Xét ΔABD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔABD cân tại B có \(\widehat{ABD}=60^0\)(cmt)
nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)
Suy ra: \(\widehat{BAD}=60^0\)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB và AC)
\(\Leftrightarrow\widehat{CAD}+60^0=90^0\)
hay \(\widehat{CAD}=30^0\)
b) Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Xét ΔADE vuông tại E và ΔCDE cân tại E có
DA=DC(ΔDAC cân tại D)
DE chung
Do đó: ΔADE=ΔCDE(Cạnh huyền-góc nhọn)
c) Xét ΔABC vuông tại A có \(\widehat{ACB}=30^0\)(gt)
nên BC=2AB(Định lí tam giác vuông)
Suy ra: \(BC=2\cdot5=10\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=10^2-5^2=75\)
hay \(AC=5\sqrt{3}\left(cm\right)\)
a) Xét ∆MBD vuông tại M và ∆NCE vuông tại N có:
BD = CE (gt).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\) ∆MBD = ∆NCE (cạnh huyền - góc nhọn).
b) Tam giác ABC cân tại A (gt) \(\Rightarrow\) AB = AC.
Ta có: AB = AM + BM; AC = AN + CN.
Mà AB = AC (cmt); BM = CN (∆MBD = ∆NCE).
\(\Rightarrow\) AM = AN.
Xét ∆MAK vuông tại M và ∆NAK vuông tại N có:
AM = AN (cmt).
AK chung.
\(\Rightarrow\) ∆MAK = ∆NAK (cạnh huyền - cạnh góc vuông).