\(\Delta\)ADE cân tại A. Trên cạnh DE lấy các điểm B và C sao cho DB=EC<
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

A B C D E I 1 2 1 1 2 2 1 2 1 2 3 3 3 4 M N

Giải:
a) Xét \(\Delta ADB,\Delta AEC\) có:
AD = AE ( do t/g ADE cân tại A )

\(\widehat{D}=\widehat{E}\) ( do t/g ADE cân tại A )

DB = EC ( gt )

\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\)

\(\Rightarrow AB=AC\) ( cạnh t/ứng )

\(\Rightarrow\Delta ABC\) cân tại A

b) Xét \(\Delta MDB,\Delta NCE\) có:
\(\widehat{M_2}=\widehat{N_2}=90^o\)

BD = CE ( gt )

\(\widehat{D}=\widehat{E}\) ( do t/g ADE cân tại A )

\(\Rightarrow\Delta MBD=\Delta NCE\) ( c.huyền - g.nhọn )

\(\Rightarrow BM=CN\) ( cạnh t/ứng ) ( đpcm )

c) Vì \(\Delta MBD=\Delta NCE\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )

\(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\) ( 2 cặp góc đối đỉnh )

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\Delta IBC\) cân tại I

d) Ta có: \(\widehat{B_3}=\widehat{C_3}\) ( do t/g ABC cân tại A )

\(\widehat{B_2}=\widehat{C_2}\) ( theo c )

\(\Rightarrow\widehat{B_3}+\widehat{B_2}=\widehat{C_3}+\widehat{C_2}\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)

Xét \(\Delta ABI,\Delta ACI\) có:
AB = AC ( do t/g ABC cân tại A )

\(\widehat{ABI}=\widehat{ACI}\left(cmt\right)\)

IB = IC ( do t/g IBC cân tại I )

\(\Rightarrow\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow\widehat{A_3}=\widehat{A_4}\) ( cạnh t/ứng )

\(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\) ( đpcm )

Vậy...

8 tháng 2 2017

a/ Xét \(\Delta ADB\)\(\Delta AEC\) có:

AD = AE (\(\Delta ADE\) cân tại A)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ADE\) cân tại A)

DB = EC (gt)

=> \(\Delta ADE=\Delta AEC\left(c-g-c\right)\)

=> AB = AC (2 cạnh tương ứng)

=> \(\Delta ABC\) cân tại A

b/ Xét 2 \(\Delta\) vuông: \(\Delta MDB\)\(\Delta NEC\) có:

DB = EC (gt)

\(\widehat{ADB}=\widehat{AEC}\) (đã cm)

=> \(\Delta MDB=\Delta NEC\)(cạnh huyền-góc nhọn)

=> BM = CN (2 cạnh tương ứng)(đpcm)

c/ Xét 2 \(\Delta\)vuông: \(\Delta AMI\)\(\Delta ANI\) có:

AI: Cạnh chung

AM = AN (đã cm)

=> \(\Delta AMI=\Delta ANI\left(ch-cgv\right)\)

=> MI = NI (2 cạnh tương ứng)

Ta có: BM + IB = MI

CN + IC = NI

mà BM = CN (ý b) ; MI = NI (cmt)

=> IB = IC

=> \(\Delta IBC\) cân tại I

d/ Xét \(\Delta AIB\)\(\Delta AIC\) có:

AB = AC(ý a)

AI: Cạnh chung

IB = IC (đã cm)

=> \(\Delta AIB=\Delta AIC\left(c-c-c\right)\)

=> \(\widehat{IAB}=\widehat{IAC}\) (2 góc tương ứng)

=> AI là tia p/g của \(\widehat{BAC}\left(đpcm\right)\)

2 tháng 2 2019

-tự vẽ hình

a) xét tam giác ADB và tam giác AEC, ta có:

AD=AE(gt)

Góc ADB=Góc AEC(gt)

DB=CE(gt)

Vậy tam giác ADB = tam giác AEC (c-g-c)

=> AB=AC(cặp cạnh t/ứng) 

=> ABC là tam giác cân tại A

b) Xét tam giác DMB và tam giác ENC, ta có:

DB=CE(gt)

Góc MDB=Góc NEC(gt)

Vậy tam giác DMB = tam giác ENC

=> BM=CN(cặp cạnh t/ứng)

=>góc MBD=góc NCE(cặp góc t/ứng)

c) ta thấy: góc MBD=góc CBI(đối đỉnh)

góc NCE=góc BCI(đối đỉnh)

=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I

d) Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(cmt)

BI=IC(tam giác IBC cân tại I)

AI là cạnh chung

Vậy tam giác BAI = tam giác CAI

=> góc BAI=IAC(cặp góc t/ứng)

=> AI là tia phân giác của BAC(đpcm)

18 tháng 5 2017

A D E I B C M N

a) Xét \(\Delta ABD\)\(\Delta ACE\) ,có :

AD = AE ( Tam giác ADE cân tại A )

\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )

BD = CE ( gt )

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

=> AB = AC

=> \(\Delta ABC\) cân tại A

b) Xét \(\Delta BMD\)\(\Delta CNE\) ,có :

BD = CE ( gt )

\(\widehat{BMD}=\widehat{CNE}=90^0\)

\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )
=> \(\Delta BMD=\Delta CNE\left(ch-gn\right)\)
=> BM = CN
c) Ta có :
\(\widehat{MBD}=\widehat{NCE}\) ( \(\Delta BMD=\Delta CNE\) )
\(\widehat{MBD}=\widehat{IBC},\widehat{NCE}=\widehat{ICB}\) ( 2 góc đối đỉnh )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác IBC cân tại I
d) \(\Delta IAB=\Delta IAC\left(c.c.c\right)\)
=> \(\widehat{IAB}=\widehat{IAC}\)
=> AI là tia phân giác của góc BAC
1 tháng 2 2018

a) Xét ∆ADE cân tại A nên góc D = góc E

Xét ∆ABD và ∆ACE, ta có:

AD = AE (gt)

góc D = góc E (chứng minh trên)

DB = EC (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

Suy ra: AB = AC (hai cạnh tương ứng)

Vậy ∆ABC cân tại A.

b) Xét hai tam giác vuông BMD và CNE, ta có:

góc BMD=góc CNE=90o

BD = CE (gt)

góc D = góc E (chứng minh trên)

Suy ra: ∆BMD = ∆CNE (cạnh huyền, góc nhọn)

Suy ra: BM = CN (hai cạnh tương ứng)

c) Ta có: ∆BMD = ∆CNE (chứng minh trên)

Suy ra: góc DBM=góc ECN (hai góc tương ứng)

góc DBM=góc IBC (đối đỉnh)

góc ECN = góc ICB (đối đỉnh)

Suy ra: góc IBC=góc ICB hay ∆IBC cân tại I.

d) Xét ∆ABI và ∆ACI, ta có:

AB = AC (chứng minh trên)

IB = IC (vì ∆IBC cân tại I)

AI cạnh chung

Suy ra: ∆ABI = ∆ACI (c.c.c) ⇒ góc BAI=góc CAI (hai góc tương ứng)

Vậy AI là tia phân giác của góc BAC



16 tháng 7 2017

Bạn tự vẽ hình nhé

a,Tam giác ADE cân tại A nên AD=AE và \(\widehat{D}\)=\(\widehat{E}\)

Hai tam giác ADB và AEC có AD=AE: \(\widehat{D}\)=\(\widehat{E}\);DB=EC nên tam giác ADB= tam giác AEC

Suy ra AB=AC. Do đó tam giác ABC cân tại A

b,Gọi AK là đường cao của tam giác ADE suy ra AK cũng là đường cao và đường phân giác của tam giác ABC suy ra \(\widehat{KAB}\)=\(\widehat{KAC}\)(t/c của đường phân giác) (1)

Mặt khác \(\widehat{DAK}\)=\(\widehat{EAK}\)(t/c) (2)

Từ (1) và (2) suy ra \(\widehat{DAB}\)=\(\widehat{EAC}\)(vì cùng = \(\widehat{DAK}\)\(\widehat{KAB}\)=\(\widehat{EAK}\)-\(\widehat{KAC}\))

Xét tam giác MAB và tam giác NAC :

Có \(\widehat{AMB}\)=\(\widehat{ANC}\)=90

Có \(\widehat{AB}\)=\(\widehat{AC}\)(cma)

Có \(\widehat{MAB}\)=\(\widehat{NAC}\)(cmt)

Suy ra tam giác MAB = tam giác NAC (g-c-g) suy ra MB=CN (các cạnh tương ứng)

c, Xét tam giác MBD và tam giác NCE có:

MB=CN(cmt)

\(\widehat{DMB}\)=\(\widehat{ENC}\)=90

DB=EC(gt)

Từ đó suy ra tam giác MBD=tam giác NCE(c-g-c) suy ra \(\widehat{MBD}\)=\(\widehat{NCE}\)(các góc tương ứng) (3)

Mặt khác \(\widehat{IBC}\)=\(\widehat{MBD}\)(đối đỉnh), \(\widehat{ICB}\)=\(\widehat{NCE}\)(đối đỉnh) (4)

Từ (3) và (4) suy ra ICB là tam giác cân(2 góc đáy bằng nhau)

d, Xét tam giác ABI và tam giác ACI có:

AI là cạnh chung

AB=AC(cma)

BI=CI(vì tam giác IBC là tam giác cân)

Suy ra tam giác ABI= tam giác ACI (c-c-c)

Suy ra \(\widehat{BAI}\)=\(\widehat{CAI}\)(các góc tương ứng)

Vậy AI là tia phân giác \(\widehat{BAC}\)

17 tháng 7 2017

thank nhé

thiếu đề bn ơi

4 tháng 2 2019

thiếu gì bn

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

a) ta có tam giác abc là tam giác cân

=> AD=AC

MÀ  BD=CE  (1)

=>AD=AE(2)

Từ 1 và 2 suy ra DE là đường TB 

=> DE=1/2BC

=> DE//BC (đccm)

sửa lại 

=>AB=AC

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau