Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn viết đề sai rồi
Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số
#)Giải :
(Hình bn tự vẽ)
AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)
Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)
Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)
Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@
Chắc đề sai rồi
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{BC}=\frac{AD}{DC}=\frac{4\sqrt{10}}{5\sqrt{10}}=\frac{4}{5}$
$AC=4\sqrt{10}+5\sqrt{10}=9\sqrt{10}$
Áp dụng định lý Viet:
$BC^2=AB^2+AC^2$
$\Leftrightarrow (\frac{5}{4}AB)^2=AB^2+(9\sqrt{10})^2$
$\Leftrightarrow AB^2=1440$
$BD=\sqrt{AB^2+AD^2}=\sqrt{1440+(4\sqrt{10})^2}=\sqrt{1440+160}=40$ (cm)
=) Áp dụng liên tục py-ta-go và định lí đường phân giác quá dễ đó bạn :V
\(\frac{AD}{AB}=\frac{ID}{IB}=\frac{1}{2}vs.AD^2+AB^2=\left(6\sqrt{3}+3\sqrt{3}\right)^2=...\\
\)
Tìm đ.c AD và AB
Làm tươn tự trên đối với tg ABC
\(\frac{AD}{DC}=\frac{AB}{BC}vs.AB^2+\left(AD+DC\right)^2=BC^2.\\
\)
\(Chỉ-cần-giải-hệ-là-ra-....\\
\)
Theo tính chất tia phân giác ta có: \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{3}{5}\Rightarrow\sin C=\frac{3}{5}=\cos B\).
\(\cos B=\frac{3}{5}\Rightarrow B\approx53^07'48,37"\Rightarrow ABD=26^033'54,18"\).
Ta có: \(AB=BD.\cos ABD=6\sqrt{5}.\cos26^033'54,18"=12\).
AB = 12 => AC = 20 .Aps dụng ĐL Py-ta-go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
A B D C