\(\Delta ABC\) vuông tại A có BD là phân giác. Biết rằng AD = 1cm, 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

xét tam giác vuông ABD vuông tại A có:

\(AB^2=BD^2+AD^2\Rightarrow AB=\sqrt{BD^2+AD^2}=\sqrt{\left(\sqrt{10}\right)^2+1^2}=\sqrt{11}\left(cm\right)\approx3,32\) A B C D 1cm \/10 cm

vì BD là phân giác của tam giác vuông ABC => BD cũng là đường cao của tam giác vuông ABC.

theo hệ thức lượng trong tam giác vuông ABC có:

\(BD^2=AD.CD\Rightarrow CD=\frac{BD^2}{AD}=\frac{\left(\sqrt{10}\right)^2}{1}=10\left(cm\right)\)

theo tính chất phân giác trong tam giác ta có:

\(\frac{BA}{AD}=\frac{BC}{CD}\Rightarrow BC=\frac{BA.CD}{AD}=\frac{\sqrt{11}.10}{1}=10\sqrt{11}\left(cm\right)\approx33,17\)

8 tháng 9 2021

Bạn viết đề sai rồi

Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số

 

28 tháng 8 2019

#)Giải :

(Hình bn tự vẽ)

AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)

Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)

Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)

Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@

Chắc đề sai rồi

30 tháng 9 2015

Theo tính chất tia phân giác ta có:  \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{3}{5}\Rightarrow\sin C=\frac{3}{5}=\cos B\).

\(\cos B=\frac{3}{5}\Rightarrow B\approx53^07'48,37"\Rightarrow ABD=26^033'54,18"\).

Ta có: \(AB=BD.\cos ABD=6\sqrt{5}.\cos26^033'54,18"=12\).

 AB = 12 => AC = 20 .Aps dụng ĐL Py-ta-go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

30 tháng 9 2015

A B D C

xét tam giác ABD có góc BAD=90 độ
= BD^2=AB^2+AD^2
=>AB^2=BD^2-AD^2=10-1=9
=> AB=3 cm
có AC=AD+DC=1+√10 cm
tam giác ABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC^2=9+1+2√10+10=20+2√10
=>BC=√(20+2√10)

9 tháng 6 2019

DC =\(\sqrt{10}\)tại sao

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{BC}=\frac{AD}{DC}=\frac{4\sqrt{10}}{5\sqrt{10}}=\frac{4}{5}$

$AC=4\sqrt{10}+5\sqrt{10}=9\sqrt{10}$

Áp dụng định lý Viet:

$BC^2=AB^2+AC^2$

$\Leftrightarrow (\frac{5}{4}AB)^2=AB^2+(9\sqrt{10})^2$

$\Leftrightarrow AB^2=1440$

$BD=\sqrt{AB^2+AD^2}=\sqrt{1440+(4\sqrt{10})^2}=\sqrt{1440+160}=40$ (cm)

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Hình vẽ:

23 tháng 6 2017

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

23 tháng 6 2017

sao lại \(\frac{1}{\sqrt{2}}\) ?