\(\Delta\)ABC vuông tại A, đường cao AH .gọi Dlà điểm đối xứng của H qua B ,Elà điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

sorry, em mới học lớp 6 thui à

a: Vì H và D đối xứng nhau qua AB

nên AH=AD; BH=BD

Xét ΔAHB và ΔADB có

AH=AD

HB=DB

AB chung

Do đó ΔAHB=ΔADB

Suy ra: góc ADB=90 độ và góc HAB=góc DAB

hay BD vuông góc với AD và AB là phân giác của góc HAD(1)

b: Ta có: H và E đối xứng nhau qua AC
nên AH=AE; CH=CE

=>ΔAHC=ΔAEC

=>góc AEC=90 độ và góc HAC=góc EAC

=>AC là phân giác của góc HAE(2)

Ta có: CH+BH=BC

=>BD+CE=BC

c: Từ (1) và (2) suy ra góc DAE=2x90=180 độ

=>D,A,E thẳng hàng

28 tháng 11 2021
Công chúa thủy tế
27 tháng 11 2016

a, là hcn

câu b

từ câu a => hf // và = ae

mà hf = fm

=> fm // và = ae

=> đpcm

câu c

tam giác bnh có be vừa là dcao vừa trung tuyến

=> tam giác bnh cân b

=> bn=bh (1)

cmtt => ch=cm (2)

mà bc= bh+ch

=> bc^2 = (bh+ch+)^2

= bh^2 + 2 bh.ch +ch^2 (3)

(1) (2) (3) => ... (đpcm)

lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^

17 tháng 11 2016

A B C E M D

a) Xét tứ giác AEBM có:

+ AD=DM(gt)

+ ED=DM( E đối xứng với M qua D)

Vậy tứ giác AEBM là hình bình hành(dấu hiệu 5) (1)

  • Xét \(\Delta ABC\) vuồng tại A có đường trung tuyến AM:

\(\Rightarrow AM=BM=\frac{BC}{2}\) (2)

Từ (1) và (2)=> hình bình hành AEBM là hình thoi(dấu hiệu 2)

=> \(AB\perp EM\) ( tính chất hai đường chéo hình thoi AEBM)

lại có ED=DM( cmt)

Do đó: E đối xứng với M qua AB.

b) AEMC?

Vì AEBM là hình thoi:

=> AE//BM hay AE//MC (1)

  • Xét \(\Delta BAC\) có:

+ AD=BD(gt)

+ AM=MC(gt)

Vậy DM là đường trung bình của \(\Delta BAC\)

=> DM//AC hay EM//AC (2)

Từ (1) và (2) => tứ giác AEBM là hình bình hành ( dấu hiệu 1)

hihi cái C/M hình AEBM mk chứng minh ở câu a luôn rùi đó nha!!!!!!!!!!!

 

17 tháng 11 2016

a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành
mà AB vuông góc EM
=> hbh AEBM là hình thoi

30 tháng 5 2017

A H B C D E 1 2

a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.

AC là đường trung trực của HE \(\Rightarrow\) AE = AH.

Suy ra AD = AE. (1)

Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)

Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)

Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)

\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)

Do đó D, A, E thẳng hàng. (2)

Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.

b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.

c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông

d) Hãy chứng minh BD = BH, CE = CH.

18 tháng 11 2017

bạn giải cụ thể giúp mình câu c với b dc ko bn?

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông.