K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

a) Áp dụng hệ thức lượng số 2 tính được CH \(\Rightarrow BC\)

Áp dụng hệ thức lượng số 1 tính được AB và AC

b) Áp dụng hệ thức lượng đầu tiên bạn tính ra BC khi nhờ vào \(\Delta\)vuông ABH \(\Rightarrow CH\)

Áp dụng hệ thức lượng đầu tiên bạn tính ra AC khi nhờ vào \(\Delta\)vuông ACH

Từ đó tính ra AH theo 2 cách: 1 là dùng hệ thức số 2, 2 là dùng hệ thức số 3. Tính kiểu nào cũng ra

10 tháng 3 2018

a) Xét \(\Delta ABC\)\(\Delta HBA\) :

\(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)

\(\widehat{B}chung\)

\(\Rightarrow\) \(\Delta ABC\) đồng dạng với \(\Delta HBA\) (g.g)

\(\Rightarrow\) \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)

\(\Rightarrow\) \(AB^2=HB\cdot BC\)

Xét \(\Delta ABC\)\(\Delta HAC\):

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}chung\)

\(\Rightarrow\)\(\Delta ABC\) đồng dạng với \(\Delta HAC\) (g.g) \(\Rightarrow\) \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\) \(\Rightarrow\) \(AC\cdot AC=BC\cdot HC\) \(\Rightarrow\) \(AC^2=BC\cdot HC\) b)
18 tháng 4 2021

A B C H 1 2

Ta có \(\widehat{A^1}+\widehat{A^2}\) = 900

\(\widehat{B}+\widehat{C}=90^0\)\(\widehat{A^1}+\widehat{C}=90^0\)

=> \(\widehat{A^1}=\widehat{B}\) ; \(\widehat{A^2}=\widehat{C}\)

Xét Δ ABH và ΔCAH có:  \(\widehat{A^1}=\widehat{B}\) ; \(\widehat{A^2}=\widehat{C}\)

=> Δ ABH ∼ ΔCAH (g.g)

=> \(\dfrac{BH}{AH}=\dfrac{AH}{CH}\) => AH2 = BH.CH = 9 . 16 = 144

=> AH = 12

=> AB = \(\sqrt{BH^2+AH^2}\) = 15

=> AC = \(\sqrt{CH^2+AH^2}\) = 20

=> BC = 9 + 16 = 25

=> AB = 15;AC = 20;BC = 25

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

1) Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$

$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)

$CH=BC-BH=8-4,5=3,5$ (cm)

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)

2. 3. Những phần này bạn làm tương tự như phần 1.

 

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ:

26 tháng 1 2017

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta có:

⇒ AH.BC = AB.AC

Hay 12.5 = AH.13 ⇒ AH = 60/13 ( cm )

Từ câu a ta có: Δ BHA ∼ Δ BAC ⇒ BH/BA = BA/BC hay BH/5 = 5/13 ⇔ BH = 25/13( cm )

Do đó: CH = BC - BH = 13 - 25/13 = 144/13( cm )