\(\Delta\)ABC ngoại tiếp đường tròn tâm I. Đặt AB = c, BC = a, CA= b. a) Cm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR: Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR: a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD b) Vecto AB + vecto CD = Vecto AD + vecto CB c)Vecto AB - vecto CD = Vecto AB - vecto BD Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH +...
Đọc tiếp

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:

Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE

Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:

a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD

b) Vecto AB + vecto CD = Vecto AD + vecto CB

c)Vecto AB - vecto CD = Vecto AB - vecto BD

Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0

Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:

a) Vecto CO - vecto OB = Vecto BA

b) Vecto AB - vecto BC = Vecto DB

c) Vecto DA - vecto DB = Vecto OD - vecto OC

d) Vecto DA - vecto DB + vecto DC = Vecto 0

Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:

a) Vecto a= vecto AB + vecto AC

b) Vecto b= vecto AB + vecto AC + vecto AG

c) Vecto c= vecto BA + vecto BC

d) Vecto d= vecto AB - vecto AC + vecto BI

5
4 tháng 8 2019

Xíu nữa làm :v

4 tháng 8 2019

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

5 tháng 9 2019

a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:

A B C I

b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)

\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)

Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).

c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)

Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định

Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).

2 tháng 8 2019

bn vt lại đb ik, thiếu nhiều dữ kiện quá

Câu 2:

a: \(\overrightarrow{AB}+\overrightarrow{CD}\)

\(=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{CI}+\overrightarrow{ID}\)

\(=\overrightarrow{IB}+\overrightarrow{ID}=2\overrightarrow{IJ}\)

b: \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{a}-\dfrac{1}{2}\overrightarrow{b}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Ta có:

\(2\overrightarrow{AN}=\overrightarrow{AN}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{AC}+\overrightarrow{CN}\)

\(=(\overrightarrow{AB}+\overrightarrow{AC})+(\overrightarrow{BN}+\overrightarrow{CN})=\overrightarrow{AB}+\overrightarrow{AC}\)

\(=2\overrightarrow{AM}+2\overrightarrow{AP}=2(\overrightarrow{AM}+\overrightarrow{AP})\)

\(\Rightarrow \overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{AP}\). Đáp án A đúng

---------------------------

Tương tự: \(\overrightarrow{BP}=\overrightarrow{BM}+\overrightarrow{BN}\Rightarrow \overrightarrow{PB}=\overrightarrow{MB}+\overrightarrow{NB}\) (đáp án B đúng)

---------------

\(\overrightarrow{BP}=\overrightarrow{BM}+\overrightarrow{BN}=2\overrightarrow{BA}+2\overrightarrow{BC}=2(\overrightarrow{BA}+\overrightarrow{BC})\) (đáp án C sai )

----------------

\(\overrightarrow{CM}=\overrightarrow{CP}+\overrightarrow{CN}=\overrightarrow{CP}+\overrightarrow{NB}\) (đáp án D đúng)

Vậy đáp án cần chọn là C

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Ta có:

\(2\overrightarrow{AN}=\overrightarrow{AN}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{AC}+\overrightarrow{CN}\)

\(=(\overrightarrow{AB}+\overrightarrow{AC})+(\overrightarrow{BN}+\overrightarrow{CN})=\overrightarrow{AB}+\overrightarrow{AC}\)

\(=2\overrightarrow{AM}+2\overrightarrow{AP}=2(\overrightarrow{AM}+\overrightarrow{AP})\)

\(\Rightarrow \overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{AP}\)

Đáp án A

3 tháng 9 2021

a) ta có vector AA'+vectorBB'+vectorCC'=1/2(vectorAB+vectorAC+vectorBA+vectorBC+vectorCA+vectorCB)=vector 0

t/c trung tuyến

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)