\(\Delta\)ABC, gọi D, E lần lượt là trung điểm của AC và BC; AE\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: Ta có: ΔBDA vuông tại D

mà DM là đường trung tuyến

nên DM=AM=MB=AB/2

Xét ΔAMD có MA=MD

nên ΔMAD cân tại M

mà \(\widehat{MAD}=60^0\)

nên ΔMAD đều

Xét ΔMBD có MB=MD

nên ΔMBD cân tại M

b: Xét ΔAEN có AE=AN

nên ΔAEN cân tại A

mà \(\widehat{EAN}=60^0\)

nên ΔAEN đều

=>EN=AN=AC/2

Xét ΔAEC có

EN là đường trung tuyến

EN=AC/2

DO đo ΔAEC vuông tại E

hay CE\(\perp\)AB

8 tháng 3 2018

A B C H D E I

a) Xét \(\Delta ADB,\Delta AEC\) có :

\(\widehat{ADB}=\widehat{AEC}\left(=90^o\right)\)

\(AB=AC\) (tam giác ABC cân tại A)

\(\widehat{A}:chung\)

=> \(\Delta ADB=\Delta AEC\) (cạnh huyền - góc nhọn)

=> AD = AE (2 cạnh tương ứng)

b) Xét \(\Delta ADE\) có :

AD = AE (cm câu a)

=> \(\Delta ADE\) cân tại A

Ta có : \(\widehat{AED}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị.

=> \(DE//BC\)

c) Xét \(\Delta AEI,\Delta ADI\) có :

AE = AD (\(\Delta AED\) cân tại A)

\(\widehat{AEI}=\widehat{ADI}\left(=90^o\right)\)

\(AI:Chung\)

=> \(\Delta AEI=\Delta ADI\left(c.g.c\right)\)

=> \(\widehat{EAI}=\widehat{DAI}\) (2 góc tương ứng)

=> AI là tia phân giác của góc A (3)

Xét \(\Delta ABM,\Delta ACM\) có :

AB = AC (tam giác ABC cân tại A)

\(AM:chung\)

BM = CM (M là trung điểm của BC)

=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

=> \(AM\) là tia phân giác của góc A (4)

Từ (3) và (4) => \(AI\equiv AM\)

=> A, I, M thẳng hàng.

17 tháng 3 2019

A B C E D O

a.Xét\(\Delta ADB\)\(\Delta AEC\)có:

\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)

\(\widehat{A}\)chung

AB=AC(gt)

=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)

b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)

Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)

=> \(\widehat{OBC}=\widehat{OCB}\)

=> Tam giác BOC cân tại O

câu b sai đề thì phải bạn ạ

còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được

17 tháng 3 2019

M là trung điểm BC bn ạ

6 tháng 1 2017

a/ Xét 2 t/g vuông ABD và ACE có:

AB = AC (gt)

\(\widehat{A}:chung\)

=> t/g ABD = t/g ACE (cạnh huyền - góc nhọn)

=> BD = CE (đpcm)

b/ Vì AB = AC(gt) => t/g ABC cân

=> \(\widehat{EBC}=\widehat{DCB}\)

Xét 2 t/g vuông: t/g BDC và t/g CEB có:

BC: Cạnh chung

\(\widehat{DCB}=\widehat{EBC}\)

=> t/g BDC = t/g CEB (cạnh góc vuông - góc nhọn kề)

=> DC = EB

Xét 2 t/g vuông: t/g OEB và t/g ODC có:

EB = DC (cmt)

\(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng do t/g ABD = t/g ACE)

=> t/g OEB = t/g ODC (cạnh góc vuông - góc nhọn kề)

=> OE = OD và OB = OC

=> đpcm

c/ Ta có: \(\widehat{AOD}+\widehat{DOI}=180^o\) (kề bù)

=> A, O, I thẳng hàng (đpcm)

Xét t/g AIB và t/g AIC có:

AI: Cạnh chung

AB = AC (gt)

IB = IB (gt)

=> t/g AIB = t/g AIC (c.c.c)

=> \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)

=> \(\widehat{AIB}=\widehat{AIC}=90^o\)

=> \(AI\perp BC\)

mà A,O, I thẳng hàng (cmt)

=> \(AO\perp BC\left(đpcm\right)\)

8 tháng 1 2017

cho mk xin cái hình đc ko bn

16 tháng 1 2019

tôi đã hk rồi nhưng bây giờ k nhớ