K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

A B C S D E F

a) Xét \(\Delta BAS\)và \(\Delta EDS\)có:

\(SA=SD\)

\(\widehat{ASB}=\widehat{DSE}\)(Đối đỉnh)       \(\Rightarrow\Delta BAS=\Delta EDS\left(c.g.c\right)\)\(\Rightarrow AB=DE\)(2 cạnh tương ứng)

\(SB=SE\)      

Xét \(\Delta BSC\)và \(\Delta ESF\)có: 

\(SC=SF\)

\(\widehat{BSC}=\widehat{ESF}\)(Đối đỉnh)   \(\Rightarrow\Delta BSC=\Delta ESF\left(c.g.c\right)\Rightarrow BC=EF\)(2 cạnh tương ứng)

\(SB=SE\)

Xét \(\Delta ASC\)và \(\Delta DSF\)có:

\(SC=SF\)

\(\widehat{ASC}=\widehat{DSF}\)(Đối đỉnh)       \(\Rightarrow\Delta ASC=\Delta DSF\left(c.g.c\right)\Rightarrow AC=DF\)(2 cạnh tương ứng)

\(SA=SD\)

Xét \(\Delta ABC\)và \(\Delta DEF\)có: 

\(AB=DE\)

\(BC=EF\)        \(\Rightarrow\Delta ABC=\Delta DEF\left(c.c.c\right)\)(ĐPCM)

\(AC=DF\)

b) Xét \(\Delta BMS\)và \(\Delta ENS\)có:

\(SM=SN\)

\(\widehat{BSM}=\widehat{ESN}\)(Đối đỉnh)     \(\Rightarrow\Delta BMS=\Delta ENS\left(c.g.c\right)\Rightarrow\widehat{BMS}=\widehat{ENS}\)(2 góc tương ứng)

\(SB=SE\)

Xét \(\Delta CMS\)và \(\Delta FNS\)có:

\(SM=SN\)

\(\widehat{MSC}=\widehat{NSF}\)(Đối đỉnh)     \(\Rightarrow\Delta CMS=\Delta FNS\left(c.g.c\right)\Rightarrow\widehat{CMS}=\widehat{FNS}\)(2 góc tương ứng)

\(SC=SF\)

Ta có: \(\widehat{BMS}=\widehat{ENS}\)và \(\widehat{CMS}=\widehat{FNS}\)\(\Rightarrow\widehat{BMS}+\widehat{CMS}=\widehat{ENS}+\widehat{FNS}\)

Mà \(\widehat{BMS}\)và \(\widehat{CMS}\)kề bù \(\Rightarrow\widehat{ENS}+\widehat{FNS}=180^0\Rightarrow\widehat{FNE}=180^0\)

\(\Rightarrow E,F,N\)là 3 điểm thẳng hàng (ĐPCM).

22 tháng 7 2017
@kurokawa neko Bạn nói rõ từ chỗ ta có: ...và... mà ...và...kề bù... được k ạ

a)Xét \(\Delta\)ABC và \(\Delta\)DEF ta có:

AB=DE(AEDB là hình bình hành)(1)

FE=BC(BFEC là hình bình hành)(2)

AC=FD(AFDC là hình bình hành)(3)

Từ 123 => \(\Delta\)ABC = \(\Delta\)DEF

b) Ta có BS=SE; CS=SF; M\(\in\)BC

=>N\(\in\)FE

=>EFN thẳng hàng

19 tháng 12 2020

CM: a) Xét tam giác AME và tam giác DMB

có ME = MB (gt)

 góc AME = góc BMD (đối đỉnh)

MA = MD (gt)

=> tam giác AME = tam giác DMB (c.g.c)

=> góc E = góc MBD (hai góc tương ứng)

Mà góc E và góc MBD ở vị trí so le trong

=> AE // BC (1)

b) Xét tam giác AEM và tam giác DCM 

có MA = MD(gt)

  góc EMA = góc DMC (đối đỉnh)

ME = MC (gt)

=> tam giác AEM = tam giác DCM (c.g.c)

=> góc F = góc MCD (hai góc tương ứng)

Mà góc F và góc MCD ở vị trí so le trong 

=> AF // BC (2)

Từ (1) và (2) suy ra AF \equiv≡AE ( theo tiên đề ơ - clit)

=> F,A,E thẳng hàng

c) Xét tam giác FMB và tam giác CME

có MF = MC (gt)

góc FMB = góc EMC (đối đỉnh)

 BM = EM (gt)

=> tam giác FMB = tam giác CME (c.g.c)

=> góc BFM = góc MCE (hai góc tương ứng)

mà góc BFM và góc MCE ở vị trí so le trong

=> BF // CE

a: Xét tứ giác ABDE có

M là trung điểm của AD

M là trung điểm của BE

DO đó: ABDE là hình bình hành

Suy ra: AE//BD

hay AE//BC(1)

Xét tứ giác AFDC có

M là trung điểm của AD

M là trung điểm của CF

Do đó: AFDC là hình bình hành

SUy ra: AF//DC
hay AF//BC(2)

Từ (1) và (2) suy ra E,A,F thẳng hàng

b: Xét tứ giác BFEC có

M là trung điểm của BE

M là trung điểm của CF

Do đó: BFEC là hình bình hành

Suy ra: BF//EC